Publications by authors named "Marielle J A Jansen"

Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valuable information from previously acquired imaging to better quantify lesions on current imaging of the same patient.

View Article and Find Full Text PDF

Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images.

View Article and Find Full Text PDF

Objectives: Accurate classification of focal liver lesions is an important part of liver disease diagnostics. In clinical practice, the lesion type is often determined from the abdominal MR examination, which includes T2-weighted and dynamic contrast enhanced (DCE) MR images. To date, only T2-weighted images are exploited for automatic classification of focal liver lesions.

View Article and Find Full Text PDF