Publications by authors named "Marielle Barascud"

Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive.

View Article and Find Full Text PDF

The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported.

View Article and Find Full Text PDF

Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts.

View Article and Find Full Text PDF

Quantitative disease resistance (QDR) is a form of plant immunity widespread in nature, and the only one active against broad host range fungal pathogens. The genetic determinants of QDR are complex and largely unknown, and are thought to rely partly on genes controlling plant morphology and development. We used genome-wide association mapping in Arabidopsis thaliana to identify ARPC4 as associated with QDR against the necrotrophic fungal pathogen Sclerotinia sclerotiorum.

View Article and Find Full Text PDF

Plant pathogens with a broad host range are able to infect plant lineages that diverged over 100 million years ago. They exert similar and recurring constraints on the evolution of unrelated plant populations. Plants generally respond with quantitative disease resistance (QDR), a form of immunity relying on complex genetic determinants.

View Article and Find Full Text PDF

Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date.

View Article and Find Full Text PDF

Insertion mutant collections are powerful tools for genetic studies in plants. Although large-scale insertional mutagenesis using T-DNA is not feasible in legumes, the Tnt1 tobacco retrotransposon can be used as a very efficient mutagen in the Medicago truncatula R108 genotype. In this article, we show that Tnt1 can also be exploited to create insertional mutants via transformation and/or regeneration in the reference cultivar Jemalong.

View Article and Find Full Text PDF