Publications by authors named "Marieli M G Dias"

The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states.

View Article and Find Full Text PDF

Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases.

View Article and Find Full Text PDF

The nuclear receptor PPARγ is essential to maintain whole-body glucose homeostasis and insulin sensitivity, acting as a master regulator of adipogenesis, lipid, and glucose metabolism. Its activation through natural or synthetic ligands induces the recruitment of coactivators, leading to transcription of target genes such as cytokines and hormones. More recently, post translational modifications, such as PPARγ phosphorylation at Ser273 by CDK5 in adipose tissue, have been linked to insulin resistance trough the dysregulation of expression of a specific subset of genes.

View Article and Find Full Text PDF