B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins.
View Article and Find Full Text PDFNeutrophils constitute the primary defense against bacterial infections, yet certain pathogens express virulence factors that enable them to subvert neutrophils-mediated killing. Outer membrane vesicles (OMVs) have emerged as a secretory system through which bacteria deliver virulence factors to host cells. OMVs from Bordetella pertussis, the etiological agent of whooping cough, are loaded with most of bacterial virulence factors, including CyaA, which plays a key role in B.
View Article and Find Full Text PDFB. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection.
View Article and Find Full Text PDFB. parapertussis is a whooping cough etiological agent, whose incidence in the population has increased remarkably. Virulence factors involved in the bacterial infection, however, remain poorly investigated.
View Article and Find Full Text PDFInquilinus limosus is an emerging multi-resistant opportunistic pathogen documented mainly in cystic fibrosis patients. Infection with I. limosus is accompanied by either an acute respiratory exacerbation or a progressive loss of pulmonary function.
View Article and Find Full Text PDFBrucella spp. are pathogenic intracellular Gram-negative bacteria adapted to life within cells of several mammals, including humans. These bacteria are the causative agent of brucellosis, one of the zoonotic infections with the highest incidence in the world and for which a human vaccine is still unavailable.
View Article and Find Full Text PDFMany signaling pathways that control cellular development, cell-cycle progression and nutritional versatility have been studied in Caulobacter crescentus. For example, it was suggested that the response regulator NtrX is conditionally essential for this bacterium and that it might be necessary for responding to a signal produced in phosphate-replete minimal medium. However, such signal has not been identified yet and the role of NtrX in C.
View Article and Find Full Text PDFBacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response.
View Article and Find Full Text PDFBrucella abortus is an important pathogenic bacterium that has to overcome oxygen deficiency in order to achieve a successful infection. Previously, we proved that a two-component system formed by the histidine kinase NtrY and the response regulator NtrX is essential to achieve an adaptive response to low oxygen tension conditions. Even though the relevance of this signaling pathway has already been demonstrated in other microorganisms, its molecular activation mechanism has not yet been described in detail.
View Article and Find Full Text PDFBrucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. The success of Brucella as pathogen relies in its ability to adapt to the harsh environmental conditions found in mammalian hosts. One of its main adaptations is the induction of the expression of different genes involved in respiration at low oxygen tension.
View Article and Find Full Text PDFRhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R.
View Article and Find Full Text PDFBrucella spp. are facultative intracellular bacteria pathogenic for many mammalian species including humans, causing a disease called brucellosis. Learning how Brucella adapts to its intracellular niche is crucial for understanding its pathogenesis mechanism, allowing for the development of new and more effective vaccines and treatments against brucellosis.
View Article and Find Full Text PDFThe bacterial genus Brucella consists of a group of facultative intracellular pathogens which produces abortion and infertility in animals and a chronic debilitating febrile illness in humans. BMFP is a basic protein of Brucella abortus that belongs to a highly conserved group of homologue proteins of unknown structure and function in proteobacteria (COG2960). In this study, we report the structural and biochemical characterization of this protein.
View Article and Find Full Text PDF