This article presents a comprehensive collection of formulas and calculations for hand-crafted feature extraction of condition monitoring signals. The documented features include 123 for the time domain and 46 for the frequency domain. Furthermore, a machine learning-based methodology is presented to evaluate the performance of features in fault classification tasks using seven data sets of different rotating machines.
View Article and Find Full Text PDFReciprocating compressors and centrifugal pumps are rotating machines used in industry, where fault detection is crucial for avoiding unnecessary and costly downtime. A novel method for fault classification in reciprocating compressors and multi-stage centrifugal pumps is proposed. In the feature extraction stage, raw vibration signals are processed using multi-fractal detrended fluctuation analysis (MFDFA) to extract features indicative of different types of faults.
View Article and Find Full Text PDFThe lack of faulty condition data reduces the feasibility of supervised learning for fault detection or fault severity discrimination in new manufacturing technologies. To deal with this issue, one-class learning arises for building binary discriminative models using only healthy condition data. However, these models have not been extrapolated to severity discrimination.
View Article and Find Full Text PDFGearboxes are mechanical devices that play an essential role in several applications, e.g., the transmission of automotive vehicles.
View Article and Find Full Text PDFFault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper.
View Article and Find Full Text PDFThere are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes.
View Article and Find Full Text PDF