Myocardial infarction (MI) is one of the leading causes of death worldwide. Prognosis and mortality rate are directly related to infarct size and post-infarction pathological heart remodeling, which can lead to heart failure. Hypoxic MI-affected areas increase the expression of hypoxia-inducible factor (HIF-1), inducing infarct size reduction and improving cardiac function.
View Article and Find Full Text PDFRab proteins belong to the Ras superfamily of small monomeric GTPases. These G proteins are the main controllers of vesicular transport in every tissue, among them, the endometrium. They are in charge of to the functional subcellular compartmentalization and cargo transport between organelles and the plasma membrane.
View Article and Find Full Text PDFWe examined the effect of specific and local silencing of sodium/hydrogen exchanger isoform 1 (NHE1) with a small hairpin RNA delivered by lentivirus (L-shNHE1) in the cardiac left ventricle (LV) wall of spontaneously hypertensive rats, to reduce cardiac hypertrophy. Thirty days after the lentivirus was injected, NHE1 protein expression was reduced 53.3 ± 3% in the LV of the L-shNHE1 compared with the control group injected with L-shSCR (NHE1 scrambled sequence), without affecting its expression in other organs, such as liver and lung.
View Article and Find Full Text PDFEmerging evidence supports a key role for endothelin-1 (ET-1) and the transactivation of the epidermal growth factor receptor (EGFR) in angiotensin II (Ang II) action. We aim to determine the potential role played by endogenous ET-1, EGFR transactivation and redox-dependent sodium hydrogen exchanger-1 (NHE-1) activation in the hypertrophic response to Ang II of cardiac myocytes. Electrically paced adult cat cardiomyocytes were placed in culture and stimulated with 1 nmol l(-1) Ang II or 5 nmol l(-1) ET-1.
View Article and Find Full Text PDFThe increase in myocardial reactive oxygen species after epidermal growth factor receptor transactivation is a crucial step in the autocrine/paracrine angiotensin II/endothelin receptor activation leading to the slow force response to stretch (SFR). Since experimental evidence suggests a link between angiotensin II or its AT1 receptor and the mineralocorticoid receptor (MR), and MR transactivates the epidermal growth factor receptor, we thought to determine whether MR activation participates in the SFR development in rat myocardium. We show here that MR activation is necessary to promote reactive oxygen species formation by a physiological concentration of angiotensin II (1 nmol l(-1)), since an increase in superoxide anion formation of ~50% of basal was suppressed by blocking MR with spironolactone or eplerenone.
View Article and Find Full Text PDFThe use of antagonists of the mineralocorticoid receptor in the treatment of myocardial hypertrophy and heart failure has gained increasing importance in the last years. The cardiac Na(+)/H(+) exchanger (NHE-1) upregulation induced by aldosterone could account for the genesis of these pathologies. We tested whether aldosterone-induced NHE-1 stimulation involves the transactivation of the epidermal growth factor receptor (EGFR).
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2011
Myocardial stretch induces a biphasic force response: a first abrupt increase followed by a slow force response (SFR), believed to be the in vitro manifestation of the Anrep effect. The SFR is due to an increase in Ca²⁺ transient of unclear mechanism. We proposed that Na⁺/H⁺ exchanger (NHE-1) activation is a key factor in determining the contractile response, but recent reports challenged our findings.
View Article and Find Full Text PDFBackground/aims: This study aimed to identify the signaling pathway for the proposed link between phosphodiesterase-5A (PDE5A) inhibition and decreased cardiac Na(+)/H(+) exchanger (NHE-1) activity.
Methods: NHE-1 activity was assessed in rat isolated papillary muscles by the Na(+)-dependent initial pH(i) recovery from a sustained acidosis (ammonium prepulse). ERK1/2, p90RSK and NHE-1 phosphorylation state during acidosis was determined.
The beneficial effect of phosphodiesterase 5A inhibition in ischemia/reperfusion injury and cardiac hypertrophy is well established. Inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1) exerts beneficial effects on these same conditions, and a possible link between these therapeutic strategies was suggested. Experiments were performed in isolated cat cardiomyocytes to gain insight into the intracellular pathway involved in the reduction of NHE-1 activity by phosphodiesterase 5A inhibition.
View Article and Find Full Text PDFMyocardial stretch elicits a biphasic contractile response: the Frank-Starling mechanism followed by the slow force response (SFR) or Anrep effect. In this study we hypothesized that the SFR depends on epidermal growth factor receptor (EGFR) transactivation after the myocardial stretch-induced angiotensin II (Ang II)/endothelin (ET) release. Experiments were performed in isolated cat papillary muscles stretched from 92 to 98% of the length at which maximal twitch force was developed (L(max)).
View Article and Find Full Text PDFThe effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and normotensive Wistar rats were used as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228+/-7 versus 251+/-5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively).
View Article and Find Full Text PDFThe enhanced activity of the cardiac Na+/H+ exchanger (NHE-1) after myocardial stretch is considered a key step of the intracellular signaling pathway leading to the slow force response to stretch as well as an early signal for the development of cardiac hypertrophy. We propose that the chain of events triggered by stretch begins with the release of small amounts of Angiotensin II (Ang II)/endothelin (ET) and ends with the increase in intracellular Ca2+ concentration ([Ca2+]i) through the Na+/Ca2+ exchanger in reverse mode (NCX(rev)), which triggers cardiac hypertrophy by activation of widely recognized Ca2+-dependent intracellular signaling pathways.
View Article and Find Full Text PDF