Publications by authors named "Mariel L Schroeder"

The main goal of this tutorial is to promote the study of children with developmental language disorder (DLD) across different languages of the world. The cumulative effect of these efforts is likely to be a set of more compelling and comprehensive theories of language learning difficulties and, possibly, of language acquisition in general. Benefits to children and local societies are also likely to accrue.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD), a neurodevelopmental disorder defined by social communication deficits plus repetitive behaviors and restricted interests, currently affects 1/36 children in the general population. Recent advances in functional brain imaging show promise to provide useful biomarkers of ASD diagnostic likelihood, behavioral trait severity, and even response to therapeutic intervention. However, current gold-standard neuroimaging methods (e.

View Article and Find Full Text PDF

Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations.

View Article and Find Full Text PDF

Modern neuroimaging modalities, particularly functional MRI (fMRI), can decode detailed human experiences. Thousands of viewed images can be identified or classified, and sentences can be reconstructed. Decoding paradigms often leverage encoding models that reduce the stimulus space into a smaller yet generalizable feature set.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (∼13 mm) than sparse fNIRS (∼30 mm) and therefore provide higher image quality, with spatial resolution ∼1/2 that of fMRI.

View Article and Find Full Text PDF

Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited.

View Article and Find Full Text PDF

Purpose: In English and related languages, many preschool-age children with developmental language disorder (DLD) have difficulties using tense and agreement consistently. In this review article, we discuss two potential input-related sources of this difficulty and offer several possible strategies aimed at circumventing input obstacles.

Method: We review a series of studies from English, supplemented by evidence from computational modeling and studies of other languages.

View Article and Find Full Text PDF

Background: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality.

View Article and Find Full Text PDF