Background: Cell-based strategies are being explored as a therapeutic option for muscular dystrophies, using a variety of cell types from different origin and with different characteristics. Primary pericytes are multifunctional cells found in the capillary bed that exhibit stem cell-like and myogenic regenerative properties. This unique combination allows them to be applied systemically, presenting a promising opportunity for body-wide muscle regeneration.
View Article and Find Full Text PDFThe prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last few decades. However, at relapse, overall survival (OS) is approximately 40-50% and is even lower for patients with chemo-refractory disease. Effective and less toxic therapies are urgently needed for these children.
View Article and Find Full Text PDFPurpose: Bosutinib is approved for adults with chronic myeloid leukemia (CML): 400 mg once daily in newly diagnosed (ND); 500 mg once daily in resistant/intolerant (R/I) patients. Bosutinib has a different tolerability profile than other tyrosine kinase inhibitors (TKIs) and potentially less impact on growth (preclinical data). The primary objective of this first-in-child trial was to determine the recommended phase II dose (RP2D) for pediatric R/I and ND patients.
View Article and Find Full Text PDFAntisense oligonucleotide (ASO) therapies for myotonic dystrophy type 1 (DM1) are based on elimination of transcripts containing an expanded repeat or inhibition of sequestration of RNA-binding proteins. This activity is achievable by both degradation of expanded transcripts and steric hindrance, although it is unknown which approach is superior. We compared blocking ASOs with RNase H-recruiting gapmers of equivalent chemistries.
View Article and Find Full Text PDFThe congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2019
Pericytes are multipotent, vessel-associated progenitors that exhibit high proliferative capacity, can cross the blood-muscle barrier, and have the ability to home to muscle tissue and contribute to myogenesis. Consequently, pericyte-based therapies hold great promise for muscular dystrophies. A complex multi-system disorder exhibiting muscular dystrophy for which pericytes might be a valuable cell source is myotonic dystrophy type 1 (DM1).
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) are a promising class of therapeutics that are starting to emerge in the clinic. Determination of intracellular concentrations required for biologic effects and identification of effective delivery vehicles are crucial for understanding the mode of action and required dosing. Here, we investigated which nuclear oligonucleotide concentration is needed for a therapeutic effect for a triplet repeat-targeting ASO in a muscle cell model of myotonic dystrophy type 1 (DM1).
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder caused by the expression of trinucleotide repeat-containing DMPK transcripts. Abnormally expanded (CUG)n repeats in these transcripts form hairpin-like structures that cause the RNA to accumulate in the cell nucleus by sequestering isoforms of the Muscleblind (MBNL) family, tissue-specific regulators of developmentally programmed, post-transcriptional processes in RNA metabolism. Through this mechanism, the function of MBNL in RNA processing becomes dominantly perturbed, which eventually leads to aberrant alternative splicing and the expression of foetal splice variants of a wide variety of proteins, including the MBNL isoforms themselves.
View Article and Find Full Text PDFPodosomes are multimolecular cytoskeletal structures that coordinate the migration of tissue-resident dendritic cells (DCs). They consist of a protrusive actin-rich core and an adhesive integrin-rich ring that contains adaptor proteins such as vinculin and zyxin. Individual podosomes are typically interconnected by a dense network of actin filaments giving rise to large podosome clusters.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair.
View Article and Find Full Text PDFSubcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages.
View Article and Find Full Text PDFFunctional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.
View Article and Find Full Text PDFMacrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.
View Article and Find Full Text PDFMalignant cells infiltrating the bone marrow (BM) interfere with normal cellular behaviour of supporting cells, thereby creating a malignant niche. We found that CXCR4-receptor expression was increased in paediatric precursor B-cell acute lymphoblastic leukaemia (BCP-ALL) cells compared with normal mononuclear haematopoietic cells (P < 0·0001). Furthermore, high CXCR4-expression correlated with an unfavourable outcome in BCP-ALL (5-year cumulative incidence of relapse ± standard error: 38·4% ± 6·9% in CXCR4-high versus 12% ± 4·6% in CXCR4-low expressing cases, P < 0·0001).
View Article and Find Full Text PDFMost relapses in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are not predicted using current prognostic features. Here, we determined the co-occurrence and independent prognostic relevance of 3 recently identified prognostic features: BCR-ABL1-like gene signature, deletions in IKZF1, and high CRLF2 messenger RNA expression (CRLF2-high). These features were determined in 4 trials representing 1128 children with ALL: DCOG ALL-8, ALL9, ALL10, and Cooperative ALL (COALL)-97/03.
View Article and Find Full Text PDFOncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease.
View Article and Find Full Text PDFTransformed cancer cells have an altered metabolism, characterized by a shift towards aerobic glycolysis, referred to as 'the Warburg phenotype'. A change in flux through mitochondrial OXPHOS and cytosolic pathways for ATP production and a gain of capacity for biomass production in order to sustain the needs for altered growth and morphodynamics are typically involved in this global rewiring of cancer cell metabolism. Characteristically, these changes in metabolism are accompanied by enhanced uptake of nutrients like glucose and glutamine.
View Article and Find Full Text PDFRecently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and acceptor pairs we found that ATP only affected the CFP-YFP based versions.
View Article and Find Full Text PDFBackground: The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression.
Results: Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability.
Fusion of the SS18 and either one of the SSX genes is a hallmark of human synovial sarcoma. The SS18 and SSX genes encode nuclear proteins that exhibit opposite transcriptional activities. The SS18 protein functions as a transcriptional coactivator and is associated with the SWI/SNF complex, whereas the SSX proteins function as transcriptional corepressors and are associated with the polycomb complex.
View Article and Find Full Text PDFThe snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups.
View Article and Find Full Text PDF