Publications by authors named "Marieke Ten Hoeve"

A life cycle assessment (LCA) was performed on five garden waste treatment practices: the production of mature compost including the woody fraction (MCIW), the production of mature compost without the woody fraction (MCWW), the production of immature compost without the woody fraction (ICWW), fresh garden waste including the woody fraction (GWIW) and fresh garden waste without the woody fraction (GWWW). The assessment included carbon sequestration after land application of the garden waste and composts, and associated emissions. The removed woody fraction was incinerated and energy recovery included as heat and electricity.

View Article and Find Full Text PDF

Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used to investigate the environmental effects of slurry acidification and separation, and whether there were synergetic environmental benefits to combining these technologies.

View Article and Find Full Text PDF

Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate.

View Article and Find Full Text PDF

Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of different technologies are available.

View Article and Find Full Text PDF

Limits on land applications of slurry nitrogen (N) and phosphorus (P) are used to restrict losses of nutrients caused by livestock production. Here, we used a model to assess technologies that enable a more even geographic distribution of slurry nutrients to land. Technologies included were screw press slurry separation, with or without solid fraction composting, centrifuge separation with or without liquid fraction ammonia (NH3) stripping, and anaerobic digestion.

View Article and Find Full Text PDF