Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a low 5-year survival rate of only 13%. Despite intense research efforts, PDAC remains insufficiently understood. In part, this is attributed to opposing effects of key players being unraveled, including the stroma but also molecules that act in a context-dependent manner.
View Article and Find Full Text PDFPancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity.
View Article and Find Full Text PDFAll irreversible Bruton tyrosine kinase (Btk) inhibitors including ibrutinib and acalabrutinib induce platelet dysfunction and increased bleeding risk. New reversible Btk inhibitors were developed, like MK-1026. The mechanism underlying increased bleeding tendency with Btk inhibitors remains unclear.
View Article and Find Full Text PDFGenetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors.
View Article and Find Full Text PDFProtease activated receptor-1 (PAR1) expression is associated with disease progression and overall survival in a variety of cancers. However, the importance of tumor cell PAR1 in pancreatic ductal adenocarcinomas (PDAC) remains unexplored. Utilizing orthotopic models with wild type and PAR1-targeted PDAC cells, we show that tumor cell PAR1 negatively affects PDAC growth, yet promotes metastasis.
View Article and Find Full Text PDFPancreatic cancer is one of the most lethal solid malignancies with little treatment options. We have recently shown that expression of protease activated receptor (PAR)-1 in the tumor microenvironment drives progression and induces chemoresistance of pancreatic cancer. As thrombin is the prototypical PAR-1 agonist, here we addressed the effect of the direct thrombin inhibitor dabigatran on pancreatic cancer growth and drug resistance in an orthotropic pancreatic cancer model.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2 deficiency persistently reduces bleomycin-induced pulmonary fibrosis or merely delays disease progression and whether pharmacological PAR-2 inhibition limits experimental pulmonary fibrosis.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis is the most devastating fibrotic diffuse parenchymal lung disease which remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. Protease-activated receptor (PAR)-1 is a G-protein-coupled receptor that mediates critical signalling pathways in pathology and physiology.
View Article and Find Full Text PDFBetulinic acid (BetA) is a plant-derived pentacyclic triterpenoid with potent anticancer capacity that targets the mitochondrial pathway of apoptosis. BetA has a broad efficacy in vitro against prevalent cancer types, including lung, colorectal, prostate, cervix and breast cancer, melanomas, neuroblastomas, and leukemias. The cytotoxic effects of the compound against healthy cells are minimal, rendering BetA a promising potential anticancer drug.
View Article and Find Full Text PDF