Publications by authors named "Marieke Jeuken"

Lettuce (Lactuca sativa L.) is a leafy vegetable crop with ongoing breeding efforts related to quality, resilience, and innovative production systems. To breed resilient and resistant lettuce in the future, valuable genetic variation found in close relatives could be further exploited.

View Article and Find Full Text PDF

Interspecific crosses can result in progeny with reduced vitality or fertility due to genetic incompatibilities between species, a phenomenon known as hybrid incompatibility (HI). HI is often caused by a bias against deleterious allele combinations, which results in transmission ratio distortion (TRD). Here, we determined the genome-wide distribution of HI between wild lettuce, , and cultivated lettuce, , in a set of backcross inbred lines (BILs) with single introgression segments from introgressed into a genetic background.

View Article and Find Full Text PDF

The nonhost resistance of wild lettuce to lettuce downy mildew seems explained by four components of a putative set of epistatic genes. The commonplace observation that plants are immune to most potential pathogens is known as nonhost resistance (NHR). The genetic basis of NHR is poorly understood.

View Article and Find Full Text PDF

Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding.

View Article and Find Full Text PDF

In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions. Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L.

View Article and Find Full Text PDF

Three regions with quantitative resistance to downy mildew of non-host and wild lettuce species, Lactuca saligna , disintegrate into seventeen sub-QTLs with plant-stage-dependent effects, reducing or even promoting the infection. Previous studies on the genetic dissection of the complete resistance of wild lettuce, Lactuca saligna, to downy mildew revealed 15 introgression regions that conferred plant stage dependent quantitative resistances (QTLs). Three backcross inbred lines (BILs), carrying an individual 30-50 cM long introgression segment from L.

View Article and Find Full Text PDF

Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B.

View Article and Find Full Text PDF

Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew.

View Article and Find Full Text PDF

The nonhost resistance of wild lettuce (Lactuca saligna) to downy mildew (Bremia lactucae) is based on at least 15 quantitative trait loci (QTL), each effective at one or more plant developmental stages. We used QTL pyramiding (stacking) to determine how many of these QTL from L. saligna are sufficient to impart complete resistance towards B.

View Article and Find Full Text PDF