Publications by authors named "Marieke Enders"

DEAH-box helicases play a crucial role in pre-mRNA splicing as they are responsible for major rearrangements of the spliceosome and are involved in various quality-ensuring steps. Prp16 is the driving force during spliceosomal catalysis, remodeling the C state into the C* state. Here, the first crystal structure of Prp16 from Chaetomium thermophilum in complex with ADP is reported at 1.

View Article and Find Full Text PDF

Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.

View Article and Find Full Text PDF

The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA.

View Article and Find Full Text PDF

The DEAH/RHA helicase Prp43 remodels protein-RNA complexes during pre-messenger RNA (mRNA) splicing and ribosome biogenesis. The helicase activity and ATP turnover are intrinsically low and become activated by G-patch (gp) factors in the specific cellular context. The gp motif connects the helicase core to the flexible C-terminal domains, but it is unclear how this affects RecA domain movement during catalysis and the unwinding of RNA substrates.

View Article and Find Full Text PDF

DEAH-box adenosine triphosphatases (ATPases) play a crucial role in the spliceosome-mediated excision of pre-mRNA introns. Recent spliceosomal cryo-EM structures suggest that these proteins utilize translocation to apply forces on ssRNAs rather than direct RNA duplex unwinding to ensure global rearrangements. By solving the crystal structure of Prp22 in different adenosine nucleotide-free states, we identified two missing conformational snapshots of genuine DEAH-box ATPases that help to unravel the molecular mechanism of translocation for this protein family.

View Article and Find Full Text PDF

Halalkalicoccus paucihalophilus is an extremely halophilic, Gram-negative, and nonmotile coccus-like archaeon, which was originally isolated from the Lop Nur region in the northwest of China. The genome consists of a single replicon (3.98 Mbp).

View Article and Find Full Text PDF