Publications by authors named "Marieke A Essers"

Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset.

View Article and Find Full Text PDF

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations.

View Article and Find Full Text PDF

Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment.

View Article and Find Full Text PDF

In the bone marrow, endothelial cells are a major component of the hematopoietic stem cell vascular niche and are a first line of defense against inflammatory stress and infection. The primary response of an organism to infection involves the synthesis of immune-modulatory cytokines, including interferon alpha. In the bone marrow, interferon alpha induces rapid cell cycle entry of hematopoietic stem cells However, the effect of interferon alpha on bone marrow endothelial cells has not been described.

View Article and Find Full Text PDF

During homeostasis, hematopoietic stem cells (HSCs) are mostly kept in quiescence with only minor contribution to steady-state hematopoiesis. However, in stress situations such as infection, chemotherapy, or transplantation, HSCs are forced to proliferate and rapidly regenerate compromised hematopoietic cells. Little is known about the processes regulating this stress-induced proliferation and expansion of HSCs and progenitors.

View Article and Find Full Text PDF

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest.

View Article and Find Full Text PDF

Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults.

View Article and Find Full Text PDF

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic changes play a crucial role in guiding and maintaining the lineage commitment of haematopoietic stem cells (HSCs) during blood cell development.
  • The DNA methylation landscape in HSCs is vital for producing mature blood cells, and disruptions in this methylation process can lead to severe blood production issues and contribute to cancer.
  • This article reviews current knowledge about DNA methylation in normal and malignant blood cell formation, highlights new techniques for studying HSC methylation, and presents a dataset from advanced sequencing methods that reveals key regulatory regions involved in early haematopoietic differentiation.
View Article and Find Full Text PDF

Previous studies have established pivotal roles for c-Myc and its homolog N-Myc in hematopoietic stem cell (HSC) maintenance and niche-dependent differentiation. However, it remains largely unclear how c-Myc expression is regulated in this context. Here, we show that HSCs and more committed progenitors express similar levels of c-myc transcripts.

View Article and Find Full Text PDF

The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity.

View Article and Find Full Text PDF

The immune response to infection is a rapid and multifaceted process. Infection affects homeostasis within the hematopoietic stem cell (HSC) niche, as lost immune cells must be replaced by HSCs. During the immune response, interferon is produced.

View Article and Find Full Text PDF

Transient or long-term quiescence, the latter referred to as dormancy are fundamental features of at least some adult stem cells. The status of dormancy is likely a critical mechanism for the observed resistance of normal HSCs and leukemic stem cells (LSCs) to anti-proliferative chemotherapy. Recent studies have revealed cytokines such as Interferon-alpha (IFNα) and G-CSF as well as arsenic trioxide (As(2)O(3)) to be efficient agents for promoting cycling of dormant HSCs and LSCs.

View Article and Find Full Text PDF

Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown.

View Article and Find Full Text PDF

Wingless (Wnt) signaling regulates many aspects of development and tissue homeostasis, and aberrant Wnt signaling can lead to cancer. Upon a Wnt signal beta-catenin degradation is halted and consequently the level of beta-catenin in the cytoplasm increases. This allows entry of beta-catenin into the nucleus where it can regulate gene transcription by direct binding to members of the lymphoid enhancer factor/T cell factor (TCF) family of transcription factors.

View Article and Find Full Text PDF

In the mouse, over the last 20 years, a set of cell-surface markers and activities have been identified, enabling the isolation of bone marrow (BM) populations highly enriched in hematopoietic stem cells (HSCs). These HSCs have the ability to generate multiple lineages and are capable of long-term self-renewal activity such that they are able to reconstitute and maintain a functional hematopoietic system after transplantation into lethally irradiated recipients. Using single-cell reconstitution assays, various marker combinations can be used to achieve a functional HSC purity of almost 50%.

View Article and Find Full Text PDF

The target gene(s) required for Myc-mediated tumorigenesis are still elusive. Here we show that while endogenous c-Myc is surprisingly dispensable for skin homeostasis and TPA-induced hyperplasia, c-Myc-deficient epidermis is resistant to Ras-mediated DMBA/TPAinduced tumorigenesis. This is mechanistically linked to p21(Cip1), which is induced in tumors by the activated Ras-ERK pathway but repressed by c-Myc.

View Article and Find Full Text PDF

beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells.

View Article and Find Full Text PDF

Forkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase Ral is activated and this results in a JNK-dependent phosphorylation of FOXO4 on threonine 447 and threonine 451.

View Article and Find Full Text PDF

AFX-like Forkhead transcription factors, which are controlled by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, are involved in regulating cell cycle progression and cell death. Both cell cycle arrest and induction of apoptosis are mediated in part by transcriptional regulation of p27(kip1). Here we show that the Forkheads AFX (FOXO4) and FKHR-L1 (FOXO3a) also directly control transcription of the retinoblastoma-like p130 protein and cause upregulation of p130 protein expression.

View Article and Find Full Text PDF