Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice.
View Article and Find Full Text PDFThe Forkhead transcription factor FoxO1 inhibits through its expression in osteoblasts β-cell proliferation, insulin secretion, and sensitivity. At least part of the FoxO1 metabolic functions result from its ability to suppress the activity of osteocalcin, an osteoblast-derived hormone favoring glucose metabolism and energy expenditure. In searching for mechanisms mediating the metabolic actions of FoxO1, we focused on ATF4, because this transcription factor also affects glucose metabolism through its expression in osteoblasts.
View Article and Find Full Text PDFOsteoporosis, a disease of low bone mass, is associated with decreased osteoblast numbers and increased levels of oxidative stress within osteoblasts. Since transcription factors of the FoxO family confer stress resistance, we investigated their potential impact on skeletal integrity. Here we employ cell-specific deletion and molecular analyses to show that, among the three FoxO proteins, only FoxO1 is required for proliferation and redox balance in osteoblasts and thereby controls bone formation.
View Article and Find Full Text PDFOsteoblasts have recently been found to play a role in regulating glucose metabolism through secretion of osteocalcin. It is unknown, however, how this osteoblast function is regulated transcriptionally. As FoxO1 is a forkhead family transcription factor known to regulate several key aspects of glucose homeostasis, we investigated whether its expression in osteoblasts may contribute to its metabolic functions.
View Article and Find Full Text PDFThe question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to test the hypothesis that developmental changes in methylation and expression are temporally correlated. We identified 31 genes that gained methylation and 111 that lost methylation from embryonic day 17.
View Article and Find Full Text PDFThe periosteum is now widely recognized as a homeostatic and therapeutic target for actions of sex steroids and intermittent PTH administration. The mechanisms by which estrogens suppress but PTH promotes periosteal expansion are not known. In this report, we show that intermittent PTH(1-34) promotes differentiation of periosteal osteoblast precursors as evidenced by the stimulation of the expression or activity of alkaline phosphatase as well as of targets of the bone morphogenetic protein 2 (BMP-2) and Wnt pathways.
View Article and Find Full Text PDFThe perichondrium, a structure made of undifferentiated mesenchymal cells surrounding growth plate cartilage, regulates chondrocyte maturation through poorly understood mechanisms. Analyses of loss- and gain-of-function models show that Twist-1, whose expression in cartilage is restricted to perichondrium, favors chondrocyte maturation in a Runx2-dependent manner. Runx2, in turn, enhances perichondrial expression of Fgf18, a regulator of chondrocyte maturation.
View Article and Find Full Text PDF