In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases.
View Article and Find Full Text PDFMultilocus sequence typing with nine selected genes is shown to be a promising new tool for accurate identifications of Brevibacteriaceae at the species level. A developed microarray also allows intraspecific diversity investigations of Brevibacterium aurantiacum showing that 13% to 15% of the genes of strain ATCC 9174 were absent or divergent in strain BL2 or ATCC 9175.
View Article and Find Full Text PDFGroup B streptococcus (GBS) expresses a hemolysin/cytolysin that plays an important role in pathogenesis. Using the Himar1 transposon mutagenesis system, a hypohemolytic mutant carrying an interrupted cylJ gene was characterized. cylJ, encoding a putative glycosyltransferase, and cylK, whose product is unknown, are both required for the full hemolytic/cytolytic activity, pigment formation, and virulence of GBS.
View Article and Find Full Text PDF