Methane (CH) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon.
View Article and Find Full Text PDFLaccase from Trametes Versicolor was successfully immobilized on gelatin beads by a crosslinking reaction with glutaraldehyde. Immobilized laccases showed better stability towards pH and temperature than free laccases. Moreover, the immobilized laccases retained a good relative activity of 85 % after 20 days of storage at 4 °C.
View Article and Find Full Text PDFIn this work, the laccase from Trametes versicolor was immobilized in highly porous silica monoliths (0.6-cm diameter, 0.5-cm length).
View Article and Find Full Text PDFIn the present work, pharmaceutical micropollutant degradation by laccase immobilized on silica through an innovative process is proposed. The influence of different parameters on the immobilization conditions was evaluated by a 2 full factorial design, and parameters leading to the highest activity were identified. Under these conditions, laccase activity reached 14 ± 2 U g of silica with a protein immobilization yield of 35%.
View Article and Find Full Text PDFSpent brewer's yeast ( sp.), the second most generated by-product from the brewing industry, contains bioactive and nutritional compounds with high added value such as proteins (40-50%), polysaccharides, fibers and vitamins. Molecules of interest from agro-industrial by-products need to be extracted, separated, concentrated, and/or purified so that a minimum purity level is achieved, allowing its application.
View Article and Find Full Text PDFDevelopment of new strategies to add-value to agro-industrial by-products are of environmental and economical importance. Innovative and low-cost sources of protein and bioactive peptides have been explored worldwide. Spent brewer's yeast (SBY) is the second most relevant by-product from the brewing industry, and despite its nutritional (about 50% protein, dry weight) and technological potential, it is still underused or needs to be disposed of.
View Article and Find Full Text PDFHigh-performance liquid chromatography with diode array (HPLC-DAD) and liquid chromatograph triple quadrupole mass spectrometry (HPLC-MS/MS) were used to characterize raw and fermented coffee pulps in terms of their phenolic composition and caffeine content. The qualitative analysis showed no significant differences between the raw and the fermented pulps. Free hydroxycinnamic acids (HAs) were mainly chlorogenic acids, with 5-caffeoylquinic acid as the major compound.
View Article and Find Full Text PDFIn the whole food production chain, from the farm to the fork, food manufacturing steps have a large environmental impact. Despite significant efforts made to optimize heat recovery or water consumption, conventional food processing remains poorly efficient in terms of energy requirements and waste management. Therefore, in the few last decades, much research has focused on the development of alternative non-thermal technologies.
View Article and Find Full Text PDFHerein, we report the development of immobilized laccase based membrane bioreactor as a novel bio-catalytic system for the degradation of emerging endocrine disruptor i.e., Bisphenol A.
View Article and Find Full Text PDFIn this study, the performance of immobilised laccase (Trametes versicolor) was investigated in combination with the mediator syringaldehyde (SYR) in removing a mixture of 38 antibiotics in an enzymatic membrane reactor (EMR). Antibiotics were spiked in osmosed water at concentrations of 10μg·L(-1) each. Laccase without mediator did not reduce the load of antibiotics significantly.
View Article and Find Full Text PDFAlkanes constitute one of the vastest reserves of raw materials for the production of fine chemicals. This paper focuses on recent advances in alkane biohydroxylation, i.e.
View Article and Find Full Text PDFThe purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW) containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters.
View Article and Find Full Text PDFThis paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration.
View Article and Find Full Text PDFUltrafiltration reactors based on polymeric or ceramic membranes were shown to be suitable catalytic systems for fast enzymatic saccharification of cellulose, allowing the full recovery and reuse of enzymes. By pre-treating cellulose with the IL 1-butyl-3-methylimidazolium chloride, the suitability of this substrate for enzymatic saccharification in a reactor based on polymeric ultrafiltration membranes was demonstrated, leading to 95% cellulose hydrolysis in 4h at 50°C. The filtration process gave a clear glucose solution (up to 113 mM) at constant permeate flow (24.
View Article and Find Full Text PDFThe main characteristics of the aguamiel (maguey-pulquero sap) during the harvest period of the Agave mapisaga plants were assessed to establish its stability through time and the industrial potential of its components. Only minor differences in aguamiel composition were detected among samples collected at different time points of the harvest period. The aguamiel analyzed contained 11.
View Article and Find Full Text PDFMembranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies.
View Article and Find Full Text PDF