Publications by authors named "Marie-Madeleine Walz"

The sustainable development encompasses the search for new materials for energy storage, gas capture, separation, and solvents in industrial processes that can substitute conventional ones in an efficient and clean manner. Ionic liquids (ILs) emerged and have been advanced as alternative materials for such applications, but an obstacle is their hygroscopicity and the effects on their physical properties in the presence of humidity. Several industrial processes depend on the aqueous interfacial properties, and the main focus of this work is the water/IL interface.

View Article and Find Full Text PDF

Force fields (FFs) for molecular simulation have been under development for more than half a century. As with any predictive model, rigorous testing and comparisons of models critically depends on the availability of standardized data sets and benchmarks. While such benchmarks are rather common in the fields of quantum chemistry, this is not the case for empirical FFs.

View Article and Find Full Text PDF

Molten salts are crucial materials in energy applications, such as batteries, thermal energy storage systems or concentrated solar power plants. Still, the determination and interpretation of basic physico-chemical properties like ionic conductivity, mobilities and transference numbers cause debate. Here, we explore a method for determination of ionic electrical mobilities based on non-equilibrium computer simulations.

View Article and Find Full Text PDF

Accurate prediction of fundamental properties such as melting points using direct physical simulation is challenging. Here, we investigate the melting point (Tm) of alkali halides that are often considered to be the simplest category of salts. Popular force fields that have been examined for this task leave considerable room for improvement.

View Article and Find Full Text PDF

The renewed interest in molten salts in the energy industry fuels the need of a thorough understanding of their physicochemical properties. Alkali halide melts are perhaps the simplest ionic liquids, but they are used as electrolytes in batteries or for thermal energy storage. Although their structure is considered to be well documented and understood, a systematic evaluation of experimental structural data reveals significant discrepancies, while there is only limited experimental information on dynamic properties.

View Article and Find Full Text PDF

Surface affinity, orientation and ion pairing are investigated in mixed and single solute systems of aqueous sodium hexanoate and hexylammonium chloride. The surface sensitive X-ray photoelectron spectroscopy technique has been used to acquire the experimental results, while the computational data have been calculated using molecular dynamics simulations. By comparing the single solute solutions with the mixed one, we observe a non-linear surface enrichment and reorientation of the organic ions with their alkyl chains pointing out of the aqueous surface.

View Article and Find Full Text PDF

A longstanding goal of computational chemistry is to predict the state of materials in all phases with a single model. This is particularly relevant for materials that are difficult or dangerous to handle or compounds that have not yet been created. Progress toward this goal has been limited, as most work has concentrated on just one phase, often determined by particular applications.

View Article and Find Full Text PDF

Acid-base equilibria of carboxylic acids and alkyl amines in the aqueous surface region were studied using surface-sensitive X-ray photoelectron spectroscopy and molecular dynamics simulations. Solutions of these organic compounds were examined as a function of pH, concentration and chain length to investigate the distribution of acid and base form in the surface region as compared to the aqueous bulk. Results from these experiments show that the neutral forms of the studied acid-base pairs are strongly enriched in the aqueous surface region.

View Article and Find Full Text PDF

Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (NaSO). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots.

View Article and Find Full Text PDF

Because of the amphiphilic properties of alcohols, hydrophobic hydration is important in the alcohol-water system. In the present paper we employ X-ray photoelectron spectroscopy (XPS) to investigate the bulk and surface molecular structure of ethanol-water mixtures from 0.2 to 95 mol %.

View Article and Find Full Text PDF

Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling.

View Article and Find Full Text PDF

The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

View Article and Find Full Text PDF

The acid-base speciation of surface-active carboxylate ions in the surface region of aqueous solutions was studied with synchrotron-radiation-based photoelectron spectroscopy. The protonated form was found at an extraordinarily large fraction compared to that expected from the bulk pH. When adding salts containing the weak acid NH4(+) to the solution, the fraction of the acidic form at the surface increases, and to a much greater extent than expected from the bulk pH of the solution.

View Article and Find Full Text PDF

Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO).

View Article and Find Full Text PDF

We demonstrate how a focused electron beam can be used to chemically activate porphyrin layers on Ag(111) such that they become locally reactive toward the decomposition of iron pentacarbonyl, Fe(CO)5. This finding considerably expands the scope of electron beam induced surface activation (EBISA) and also has implications for electron beam induced deposition (EBID). The influence of the porphyrin layer thickness on both processes is studied in detail using scanning tunneling microscopy (STM) and scanning electron microscopy (SEM) as well as Auger electron spectroscopy (AES) and scanning Auger microscopy (SAM).

View Article and Find Full Text PDF

The identification of defects and their controlled generation in titanate nanostructures is a key to their successful application in photoelectronic devices. We comprehensively explored the effect of vacuum annealing on morphology and composition of Na(2)Ti(3)O(7) nanowires and protonated H(2)Ti(3)O(7) nanoscrolls using a combination of scanning electron microscopy, Auger and Fourier-transform infrared (FT-IR) spectroscopy, as well as ab initio density functional theory (DFT) calculations. The observation that H(2)Ti(3)O(7) nanoscrolls are more susceptible to electronic reduction and annealing-induced n-type doping than Na(2)Ti(3)O(7) nanowires is attributed to the position of the conduction band minimum.

View Article and Find Full Text PDF

Upon exposure to Fe(CO)(5), the formation of pure cubic Fe nanocrystals with dimensions up to ~75 nm is reported on ultra-thin SiO(x) films (thickness ≈ 0.5 nm) on Si(001), which have been prepared in situ under UHV conditions. The active centers for initial decomposition of Fe(CO)(5) resulting in the growth of the Fe clusters are proposed to be SiO sites.

View Article and Find Full Text PDF

We demonstrate that adsorbed meso-tetraphenylporphyrin molecules can coordinate Zn atoms that are pre-deposited on an Ag(111) surface, forming a complex that is identical to directly deposited tetraphenylporphyrinato-zinc(II); this reaction, which we studied with XPS, is the first example of an oxidative dissolution of a metal by a large organic ligand under ultrahigh vacuum conditions.

View Article and Find Full Text PDF