Publications by authors named "Marie-Louise Ricketts"

Date palm fruit (Phoenix dactylifera) consumption reduces serum triglyceride levels in human subjects. The objective of this study was to prepare an extract from dates and determine whether it acts as a ligand for the farnesoid x receptor (FXR), a nuclear receptor important for maintaining triglyceride and cholesterol homeostasis. Freeze-dried extracts were isolated from California-grown dates (Deglet Noor and Medjool) from the 2014 and 2015 harvests, by means of liquid extraction and solid phase separation.

View Article and Find Full Text PDF

Background: Cardiovascular disease (CVD) is currently the leading cause of death globally. The metabolic syndrome (MetS), a clustering of risk factors including hypertension, hyperglycemia, elevated low-density lipoprotein (LDL) cholesterol, reduced high-density lipoprotein (HDL) cholesterol and increased visceral adiposity, is a significant risk factor for the development of CVD. Non-alcoholic fatty liver disease (NAFLD), often referred to as the hepatic manifestation of MetS, is a constellation of progressive liver disorders closely linked to obesity, diabetes, and insulin resistance.

View Article and Find Full Text PDF

Dietary procyanidins have emerged as important bioactive components that regulate various metabolic pathways to maintain homeostasis. Grape seed procyanidin extract (GSPE), in particular, has demonstrated regulatory effects on bile acid and lipid metabolism in vivo. While numerous studies in rodent models have shown the potent hypolipidemic action of grape seed extracts, human studies have shown inconsistent results.

View Article and Find Full Text PDF

Scope: Histone deacetylases (HDACs) have emerged as epigenetic regulators of risk factors associated with the metabolic syndrome (MetS), and certain botanical extracts have proven to be potent HDAC inhibitors. Understanding the role of dietary procyanidins in HDAC inhibition is important in exploring the therapeutic potential of natural products.

Methods: C57BL/6 mice were gavaged with vehicle (water) or grape seed procyanidin extract (GSPE, 250 mg/kg) and terminated 14 h later.

View Article and Find Full Text PDF

Soy isoflavones exert beneficial health effects; however, their potential to ameliorate conditions associated with the metabolic syndrome (MetS) has not been studied in detail. In vitro and in vivo models were used to determine the effect of isoflavones on lipid metabolism, inflammation, and oxidative stress. In nude mice, consumption of Novasoy (NS) increased cholesterol and lipid metabolism gene expression, including Scd-1 (27.

View Article and Find Full Text PDF

Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY).

View Article and Find Full Text PDF

Scope: Understanding the molecular basis by which dietary procyanidins modulate triglyceride and cholesterol homeostasis has important implications for the use of natural products in the treatment and prevention of cardiovascular disease.

Methods: To determine whether modulation of bile acid (BA) homeostasis contributes to the hypotriglyceridemic action of grape seed procyanidin extract (GSPE) we examined the effect on genes regulating BA absorption, transport and synthesis in vitro, in Caco-2 cells, and in vivo, in wild type (C57BL/6) and farnesoid x receptor knockout (Fxr(-/-)) mice.

Results: We provide novel evidence demonstrating that GSPE is a naturally occurring gene-selective bile acid receptor modulator (BARM).

View Article and Find Full Text PDF

The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days.

View Article and Find Full Text PDF

Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily.

View Article and Find Full Text PDF

Consumption of dietary flavonoids has been associated with reduced mortality and risk of cardiovascular disease, partially by reducing triglyceridemia. We have previously reported that a grape seed procyanidin extract (GSPE) reduces postprandial triglyceridemia in normolipidemic animals signaling through the orphan nuclear receptor small heterodimer partner (SHP) a target of the bile acid receptor farnesoid X receptor (FXR). Our aim was to elucidate whether FXR mediates the hypotriglyceridemic effect of procyanidins.

View Article and Find Full Text PDF

Pregnane X receptor (PXR) is an important component of the body's adaptive defense system responsible for the elimination of various toxic xenobiotics. PXR activation by endogenous and exogenous chemicals, including steroids, antibiotics, bile acids, and herbal compounds, results in induction of drug metabolism. We investigated the ability of the isoflavones genistein, daidzein, and the daidzein metabolite equol to activate human and mouse PXR in vitro using cell-based transient transfection studies and primary hepatocytes and in vivo in a mouse model.

View Article and Find Full Text PDF

Hypertriglyceridemia is an independent risk factor in the development of cardiovascular diseases, and we have previously reported that oral administration of a grape seed procyanidin extract (GSPE) drastically decreases plasma levels of triglycerides (TG) and apolipoprotein B (ApoB) in normolipidemic rats, with a concomitant induction in the hepatic expression of the nuclear receptor small heterodimer partner (NR0B2/SHP). Our objective in this study was to elucidate whether SHP is the mediator of the reduction of TG-rich ApoB-containing lipoproteins triggered by GSPE. We show that GSPE inhibited TG and ApoB secretion in human hepatocarcinoma HepG2 cells and had and hypotriglyceridemic effect in wild-type mouse.

View Article and Find Full Text PDF

Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which cafestol elevates serum lipid levels.

View Article and Find Full Text PDF

The guinea pig adrenal gland, analogous to the human, possesses the capacity to synthesize C(19) steroids. In order to further understand the control of guinea pig adrenal steroidogenesis we undertook the characterization of the guinea pig 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3beta-HSD) expressed in the adrenal gland. A cDNA clone encoding guinea pig 3beta-HSD isolated from a guinea pig adrenal library is predicted to encode a protein of 373 amino acid residues and 41,475Da.

View Article and Find Full Text PDF

Consumption of soy has been demonstrated to reduce circulating cholesterol levels, most notably reducing low-density lipoprotein (LDL) cholesterol levels in hypercholesterolemic individuals. The component or components that might be responsible for this effect is still a matter of debate or controversy among many researchers. Candidate agents include an activity of soy protein itself, bioactive peptides produced during the digestive process, or the soy isoflavones.

View Article and Find Full Text PDF

The 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase (3beta-HSD) isoenzymes are responsible for the oxidation and isomerization of Delta(5)-3beta-hydroxysteroid precursors into Delta(4)-ketosteroids, thus catalyzing an essential step in the formation of all classes of active steroid hormones. In humans, expression of the type I isoenzyme accounts for the 3beta-HSD activity found in placenta and peripheral tissues, whereas the type II 3beta-HSD isoenzyme is predominantly expressed in the adrenal gland, ovary, and testis, and its deficiency is responsible for a rare form of congenital adrenal hyperplasia. Phylogeny analyses of the 3beta-HSD gene family strongly suggest that the need for different 3beta-HSD genes occurred very late in mammals, with subsequent evolution in a similar manner in other lineages.

View Article and Find Full Text PDF