We report for the first time preparation of mannosylated and histidylated lipopolyplexes (Man-LPD100) with uptake and transfection selectivity for dendritic cells (DCs). Man-LPD100 were prepared by addition of mannosylated and histidylated liposomes (Man-Lip100) on preformed PEGylated histidylated polylysine/DNA polyplexes. Man-Lip100 comprised a cationic [O,O-dioleyl-N-(3N-(N-methylimidazolium iodide)propylene) phosphoramidate)] lipid, a neutral [O,O-dioleyl-N-histamine Phosphoramidate] co-lipid and β-D-mannopyranosyl-N-dodecylhexadecanamide (Man-lipid).
View Article and Find Full Text PDFA short preparation of polyoxygenated macrocycles can be carried out by combining the formation of an acetal linkage, to introduce long alkyl chains, with a ring closure metathesis. As an example, this methodology was used to synthesize a new polyamino lipid.
View Article and Find Full Text PDFTo date, no clear and constant relationship has been established between the chemical structure and the efficiency of non-viral transfection reagents. Despite the improvement of synthetic transfection systems, the capacity to transfect a target cell in a specific way is still a major challenge that gene therapy needs to overcome to be successful. Consequently, we developed a strategy aimed specifically at improving transfection of targeted human epithelial cells and to examine the possible effects of electrostatic interactions.
View Article and Find Full Text PDFThe need for fast and efficient purification methods that can be easily handled and moreover automated is considerably increasing with the new techniques of high-throughput chemical synthesis. Following our previous work on the use of simple polymeric scavengers in fast reactions and purifications of organic substances, this article presents the results found during the development of a new method for the purification of phenolic substances. The purification method was found to be regulated by the interaction of acidic phenol groups with a basic polystyrene resin.
View Article and Find Full Text PDFDuring the preparation of 3-C-(6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-mannopyranosyl)-1-propene, using a published Sakurai-type reaction on the parent methyl glycoside, some observations were made on the sensitivity to reaction conditions that were not previously reported. This Note presents the study of this allylation reaction followed by acetolysis, which ultimately led to the best conditions to obtain the C-glycoside, and on further transformations to yield the corresponding aldehydic and acidic derivatives.
View Article and Find Full Text PDFBackground: The low efficiency and toxicity of transfection in a primary culture of hepatocytes using cationic lipids remains a limiting step to the study of gene function and the setting up of non-viral gene therapy.
Methods: A novel class of cationic lipids (GBs) derived from natural glycine betaine compounds covalently linked to acyl chains by enzymatically hydrolysable peptide and ester bonds, a structure designed to reduce cytotoxicity, was used to improve transfection efficiency in a primary culture of rat hepatocytes. The relationship between lipid structure, lipoplex formulation and transfection efficiency was studied using six GBs (12-14-16, 22-24-26) varying in their spacer and acyl chains.