B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in IFNGR2 (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4 T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4 T cell subsets with brain-homing ability in MS.
View Article and Find Full Text PDFBackground: Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation.
Methods: Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs).
Recent clinical trials have shown promising results for the next-generation Bruton's tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear.
View Article and Find Full Text PDFIn early multiple sclerosis (MS), an IFN-γGM-CSFIL-17 CD4 T-cell subset termed T helper 17.1 (Th17.1) reveals enhanced capacity to infiltrate the central nervous system.
View Article and Find Full Text PDFThe effector programs of CD8 memory T cells are influenced by the transcription factors RUNX3, EOMES and T-bet. How these factors define brain-homing CD8 memory T cells in multiple sclerosis (MS) remains unknown. To address this, we analyzed blood, CSF and brain tissues from MS patients for the impact of differential RUNX3, EOMES and T-bet expression on CD8 T cell effector phenotypes.
View Article and Find Full Text PDFIn MS, pathogenic memory B cells infiltrate the brain and develop into antibody-secreting cells. Chemokine receptors not only define their brain-infiltrating capacity, but also assist in their maturation in germinal centers. How this corresponds to pregnancy, as a naturally occurring modifier of MS, is underexplored.
View Article and Find Full Text PDFMultiple sclerosis (MS) patients are protected from relapses during pregnancy and have an increased relapse risk after delivery. It is unknown how pregnancy controls disease-contributing CD4 T helper (Th) cells and whether this differs in MS patients who experience a postpartum relapse. Here, we studied the effector phenotype of Th cells in relation to pregnancy and postpartum relapse occurrence in MS.
View Article and Find Full Text PDFNeuromyelitis optica spectrum disorders are a group of rare, but severe autoimmune diseases characterized by inflammation of the optic nerve(s) and/or spinal cord. Although naive B cells are considered key players by escaping central tolerance checkpoints, it remains unclear how their composition and outgrowth differ in patients with neuromyelitis optica spectrum disorders. Under complete treatment-naive circumstances, we found that naive mature/transitional B-cell ratios were reduced in the blood of 10 patients with aquaporin-4 immunoglobulin G-positive disease (neuromyelitis optica spectrum disorders) as compared to 11 both age- and gender-matched healthy controls, eight patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders and 10 patients with multiple sclerosis.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2020
Objective: To study whether glucocorticoid (GC) resistance delineates disease-relevant T helper (Th) subsets that home to the CNS of patients with early MS.
Methods: The expression of key determinants of GC sensitivity, multidrug resistance protein 1 (MDR1/) and glucocorticoid receptor (GR/), was investigated in proinflammatory Th subsets and compared between natalizumab-treated patients with MS and healthy individuals. Blood, CSF, and brain compartments from patients with MS were assessed for the recruitment of GC-resistant Th subsets using fluorescence-activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence.
C-type lectin is located next to , the master transcription factor of HLA class II (HLA-II), at a susceptibility locus for several autoimmune diseases, including multiple sclerosis (MS). We previously found that promotes the biogenesis of HLA-II peptide-loading compartments (MIICs) in myeloid cells. Given the emerging role of B cells as APCs in these diseases, in this study, we addressed whether and how is involved in the BCR-dependent HLA-II pathway.
View Article and Find Full Text PDFObjective: To explore the correlation between serum and CSF neurofilament light chain (NfL) and the association of NfL levels and future disease activity in pediatric patients with a first attack of acquired demyelinating syndromes (ADS).
Methods: In total, 102 children <18 years with a first attack of CNS demyelination and 23 age-matched controls were included. Clinically definite multiple sclerosis (CDMS) was set as an endpoint for analysis.
Objective: Results from anti-CD20 therapies demonstrate that B- and T-cell interaction is a major driver of multiple sclerosis (MS). The local presence of B-cell follicle-like structures and oligoclonal bands in MS patients indicates that certain B cells infiltrate the central nervous system (CNS) to mediate pathology. Which peripheral triggers underlie the development of CNS-infiltrating B cells is not fully understood.
View Article and Find Full Text PDFIn MS, B cells survive peripheral tolerance checkpoints to mediate local inflammation, but the underlying molecular mechanisms are relatively underexplored. In mice, the MIF pathway controls B-cell development and the induction of EAE. Here, we found that MIF and MIF receptor CD74 are downregulated, while MIF receptor CXCR4 is upregulated in B cells from early onset MS patients.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) levels of T-cell activation marker soluble CD27 (sCD27) are associated with subsequent disease activity after a first attack of suspected MS in adults. The predictive value for disease course in children with acquired demyelinating syndromes (ADS) is unknown.
Objectives: To assess the predictive value of sCD27 levels for clinically definite multiple sclerosis (CDMS) diagnosis in childhood ADS.
Background: A promising biomarker for axonal damage early in the disease course of multiple sclerosis (MS) is neurofilament light chain (NfL). It is unknown whether NfL has the same predictive value for MS diagnosis in children as in adults.
Objective: To explore the predictive value of NfL levels in cerebrospinal fluid (CSF) for MS diagnosis in paediatric and adult clinically isolated syndrome (CIS) patients.
T cells are considered pivotal in the pathology of multiple sclerosis (MS), but their function and antigen specificity are unknown. To unravel the role of T cells in MS pathology, we performed a comprehensive analysis on T cells recovered from paired blood, cerebrospinal fluid (CSF), normal-appearing white matter (NAWM) and white matter lesions (WML) from 27 MS patients with advanced disease shortly after death. The differentiation status of T cells in these compartments was determined by ex vivo flow cytometry and immunohistochemistry.
View Article and Find Full Text PDFUsing proteomics, we previously identified chromogranin A (CgA) and clusterin (CLU) as disease-related proteins in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS). CgA and CLU are involved in cell survival and are implicated in neurodegenerative disorders and may also have roles in MS pathophysiology. We investigated CgA and CLU expression in lesions and nonlesional regions in postmortem brains of MS patients and controls and in the brains of marmosets with experimental autoimmune encephalomyelitis.
View Article and Find Full Text PDFC-type lectins are key players in immune regulation by driving distinct functions of antigen-presenting cells. The C-type lectin CLEC16A gene is located at 16p13, a susceptibility locus for several autoimmune diseases, including multiple sclerosis. However, the function of this gene and its potential contribution to these diseases in humans are poorly understood.
View Article and Find Full Text PDFKinesin family member 21b (kif21b) is one of the few multiple sclerosis (MS) risk genes with a presumed central nervous system function. Kif21b belongs to the kinesin family, proteins involved in intracellular transport of proteins and organelles. We hypothesised that kif21b is involved in the neurodegenerative component of MS and Alzheimer's (AD) disease.
View Article and Find Full Text PDFCD44 variant (CD44(v)) isoforms play important roles in the development of autoimmune disorders, including colitis and arthritis, but their role in multiple sclerosis (MS) has been explored only to a limited extent. We determined the functional relevance of CD44(v) isoforms in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation of CD44(v7) and CD44(v10) isoforms significantly reduced the clinical EAE burden, as well as the number of inflammatory infiltrates.
View Article and Find Full Text PDFDuring MS, phagocytosing myelin-containing macrophages arise and lie in close proximity to T cells. To date, it has not been addressed whether these myelin-laden macrophages have the capacity to present antigens to T cells and whether this contributes to inflammation in disease. We demonstrate that in vitro-generated human and mouse myelin-laden macrophages expressed MHC class I and II and costimulatory molecules and are thus well equipped for antigen presentation.
View Article and Find Full Text PDFMyelin-laden macrophages reside within the CNS, the CSF and in the CNS-draining lymph nodes during MS and EAE, suggesting migration of these macrophages between these compartments and interaction with other cells. Since chemokines and their receptors are pivotal for leukocyte trafficking, we addressed whether myelin ingestion affects chemotaxis of mouse macrophages in vitro. Myelin ingestion enhanced expression of CCR7 and CXCR3 on macrophages and migration towards CCL21 and CXCL10.
View Article and Find Full Text PDFNon-human primates (NHPs) offer valuable animal models for basic research into human diseases and for the preclinical validation of new therapeutics. Detailed in situ examination of the involved cell types using immunohistochemistry is often hampered by the lack of cross-reactive antibodies (Abs). In the current study, we have tested a large panel of monoclonal antibodies raised against human leukocyte differentiation and activation markers for cross-reactivity on cryosections of lymphoid tissue from six NHP species.
View Article and Find Full Text PDFDrainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes.
View Article and Find Full Text PDF