CD4 T cells are central effectors of anti-cancer immunity and immunotherapy, yet the regulation of CD4 tumor-specific T (T) cells is unclear. We demonstrate that CD4 T cells are quickly primed and begin to divide following tumor initiation. However, unlike CD8 T cells or exhaustion programming, CD4 T cell proliferation is rapidly frozen in place by a functional interplay of regulatory T cells and CTLA4.
View Article and Find Full Text PDFCD4 T cells are important effectors of anti-tumor immunity, yet the regulation of CD4 tumor-specific T (T ) cells during cancer development is still unclear. We demonstrate that CD4 T cells are initially primed in the tumor draining lymph node and begin to divide following tumor initiation. Distinct from CD8 T cells and previously defined exhaustion programs, CD4 T cell proliferation is rapidly frozen in place and differentiation stunted by a functional interplay of T regulatory cells and both intrinsic and extrinsic CTLA4 signaling.
View Article and Find Full Text PDFRegulation of amino acid availability and metabolism in immune cells is essential for immune system homeostasis and responses to exogenous and endogenous challenges including microbial infection, tumorigenesis and autoimmunity. In myeloid cells the consumption of amino acids such as arginine and tryptophan and availability of their metabolites are key drivers of cellular identity impacting development, functional polarization to an inflammatory or regulatory phenotype, and interaction with other immune cells. In this review, we discuss recent developments and emerging concepts in our understanding of the impact amino acid availability and consumption has on cellular phenotype focusing on two key myeloid cell populations, macrophages and myeloid derived suppressor cells (MDSCs).
View Article and Find Full Text PDFGermline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood.
View Article and Find Full Text PDFGeneral control nonderepressible 2 (GCN2) is an environmental sensor controlling transcription and translation in response to nutrient availability. Although GCN2 is a putative therapeutic target for immuno-oncology, its role in shaping the immune response to tumors is poorly understood. Here, we used mass cytometry, transcriptomics, and transcription factor-binding analysis to determine the functional impact of GCN2 on the myeloid phenotype and immune responses in melanoma.
View Article and Find Full Text PDFThe transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo.
View Article and Find Full Text PDFAutoimmune diseases are characterized by pathogenic immune responses to self-antigens. In systemic lupus erythematosus (SLE), many self-antigens are found in apoptotic cells (ACs), and defects in removal of ACs from the body are linked to a risk for developing SLE. This includes pathological memory that gives rise to disease flares.
View Article and Find Full Text PDFSynthesis of the p53 tumor suppressor and its subsequent activation following DNA damage are critical for its protection against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) at the 5' untranslated region of the p53 mRNA. However, the connection between IRES-mediated p53 translation and p53's tumor suppressive function is unknown.
View Article and Find Full Text PDFSynthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) that is located at the 5'-untranslated region (UTR) of p53 mRNA and found that the IRES activity increases following DNA damage.
View Article and Find Full Text PDFUbiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2013
Chloroquine is a pharmaceutical agent that has been widely used to treat patients with malaria. Chloroquine has also been reported to have hypoglycemic effects on humans and animal models of diabetes. Despite many previous studies, the mechanism responsible for its hypoglycemic effect is still unclear.
View Article and Find Full Text PDFRnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8(-/-) mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8(-/-) mice in a tissue- and cell type-specific manner.
View Article and Find Full Text PDFChk2 is an effector kinase important for the activation of cell cycle checkpoints, p53, and apoptosis in response to DNA damage. Mus81 is required for the restart of stalled replication forks and for genomic integrity. Mus81(Δex3-4/Δex3-4) mice have increased cancer susceptibility that is exacerbated by p53 inactivation.
View Article and Find Full Text PDFAtaxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. The gene mutated in this disease, Atm (A-T mutated), encodes a serine/threonine protein kinase that has been traditionally considered to be a nuclear protein controlling cell-cycle progression. However, many of the growth abnormalities observed in patients with A-T, including neuronal degeneration and insulin resistance, remain difficult to explain with nuclear localization of ATM.
View Article and Find Full Text PDFSignaling and repair of DNA double-strand breaks (DSBs) are critical for preventing immunodeficiency and cancer. These DNA breaks result from exogenous and endogenous DNA insults but are also programmed to occur during physiological processes such as meiosis and immunoglobulin heavy chain (IgH) class switch recombination (CSR). Recent studies reported that the E3 ligase RNF8 plays important roles in propagating DNA DSB signals and thereby facilitating the recruitment of various DNA damage response proteins, such as 53BP1 and BRCA1, to sites of damage.
View Article and Find Full Text PDFAtaxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. Patients with A-T also have high incidences of type 2 diabetes mellitus. The gene mutated in this disease, ATM (A-T, mutated), encodes a protein kinase.
View Article and Find Full Text PDFAnat Rec (Hoboken)
March 2007
Ataxia-telangiectasia (A-T) is a human autosomal recessive disorder characterized by neuronal degeneration as well as many other physiological and somatic defects. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370 kDa protein kinase. ATM knockout mouse models (ATM(-/-)) show growth retardation, infertility, neurological dysfunction, defects in T-lymphocytes, and extreme sensitivity to ionizing radiation.
View Article and Find Full Text PDFWhile posttranslational regulation of p53 levels by its interaction with the ubiquitin ligase MDM2 is widely accepted, it has recently become clear that regulation of p53 translation also contributes to p53 induction following DNA damage. However, the mechanisms underlying the translational control of p53 are still poorly understood. In this review, we will focus on the translational regulation of p53 through the 5'- and 3'-untranslated regions of its mRNA.
View Article and Find Full Text PDFAtaxia telangiectasia (A-T) is an autosomal, recessive disorder mainly characterized by neuronal degeneration. However, the reason for neuronal degeneration in A-T patients is still unclear. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370-kDa protein kinase.
View Article and Find Full Text PDF