Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata.
View Article and Find Full Text PDFCDPKs (calcium-dependent protein kinases), which contain both calmodulin-like calcium binding and serine/threonine protein kinase domains, are only present in plants and some protozoans. Upon activation by a stimulus, they transduce the signal through phosphorylation cascades to induce downstream responses, including transcriptional regulation. To understand the functional specificities of CDPKs, 14 Arabidopsis CPKs (CDPKs in plants) representative of the three main subgroups were characterized at the biochemical level, using HA (haemagglutinin)-tagged CPKs expressed in planta.
View Article and Find Full Text PDFCytosolic/nuclear molecular chaperones of the heat shock protein families HSP90 and HSC70 are conserved and essential proteins in eukaryotes. These proteins have essentially been implicated in the innate immunity and abiotic stress tolerance in higher plants. Here, we demonstrate that both chaperones are recruited in Arabidopsis (Arabidopsis thaliana) for stomatal closure induced by several environmental signals.
View Article and Find Full Text PDFSnf1-related protein kinases 2 (SnRK2s) are major positive regulators of drought stress tolerance. The kinases of this family are activated by hyperosmotic stress, but only some of them are also responsive to abscisic acid (ABA). Moreover, genetic evidence has indicated the ABA-independence of SnRK2 activation in the fast response to osmotic stress.
View Article and Find Full Text PDFIn Arabidopsis cell suspension, hyperosmotic stresses (mannitol and NaCl) were previously shown to activate nine sucrose non-fermenting 1 related protein kinases 2 (SnRK2s) whereas only five of them were also activated by abscisic acid (ABA) treatment. Here, the possible activation by phosphorylation/ dephosphorylation of each kinase was investigated by studying their phosphorylation state after osmotic stress, using the Pro-Q Diamond, a specific dye for phosphoproteins. All the activated kinases were phosphorylated after osmotic stress but the induced phosphorylation changes were clearly different depending on the kinase.
View Article and Find Full Text PDFThree of the protein kinases activated by hypoosmotic stress in Arabidopsis thaliana cell suspensions were previously characterized [FEBS, 2002, 527, 43-50] as mitogen-activated protein (MAP) kinases and two of them corresponded to Arabidopsis mitogen-activated protein kinase 6 (MPK6) (44 kDa) and MPK3 (39 kDa). The third MAP kinase was identified here to MPK4, using a corresponding specific antibody. Like MPK6 and MPK3, MPK4 activity is clearly inhibited by apigenin and MPK4 activation by hypoosmolarity needs upstream phosphorylation events.
View Article and Find Full Text PDF