BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function.
View Article and Find Full Text PDFPhysical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes).
View Article and Find Full Text PDFSnorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) type V is caused by an autosomal dominant mutation in the IFITM5 gene, also known as BRIL. The c.-14C>T mutation in the 5'UTR of BRIL creates a novel translational start site adding 5 residues (MALEP) in frame with the natural coding of BRIL.
View Article and Find Full Text PDFBRIL (bone-restricted IFITM-like), is a short transmembrane protein expressed almost exclusively in osteoblasts. Although much is known about its bone-restricted gene expression pattern and protein biochemical and topological features, little information is available for BRIL physiological function. Two autosomal dominant forms of osteogenesis imperfecta (OI) are caused by distinct, but recurrent mutations in the BRIL gene.
View Article and Find Full Text PDFBRIL/IFITM5 is a membrane protein present almost exclusively in osteoblasts, which is believed to adopt a type III (N-out/C-out) topology. Mutations in IFITM5 cause OI type V, but the characteristics of the mutant protein and the mechanism involved are still unknown. The purpose of the current study was to re-assess the topology, localization, and biochemical properties of BRIL and compare it to the OI type V mutant in MC3T3 osteoblasts.
View Article and Find Full Text PDFBackground: BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V.
Results: Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation.
Conclusion: Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications.
In the course of attempting to define the bone "secretome" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro.
View Article and Find Full Text PDFTerminal differentiation of keratinocytes results in the formation of a cornified layer composed of cross-linked intracellular and extracellular material. Using a signal trap expression screening strategy, we have identified four cDNAs encoding secreted proteins potentially involved in this process. One of the cDNAs is identical to the short isoform of suprabasin, a recently described epidermis-specific protein, which is shown here to contain a functional secretory signal.
View Article and Find Full Text PDFAlthough a number of secreted factors have been demonstrated to be bone regulators, none of these are unique to bone. Using a viral-based signal-trap strategy we have identified a novel gene we have termed "osteocrin." A 1280-bp mRNA encodes osteocrin producing a mature protein of 103 amino acids with a molecular mass of 11.
View Article and Find Full Text PDFWe have developed a functional genomics tool to identify the subset of cDNAs encoding secreted and membrane-bound proteins within a library (the 'secretome'). A Sindbis virus replicon was engineered such that the envelope protein precursor no longer enters the secretory pathway. cDNA fragments were fused to the mutant precursor and expression screened for their ability to restore membrane localization of envelope proteins.
View Article and Find Full Text PDF