Publications by authors named "Marie-Francoise Devaux"

A quantitative histology of maize stems is needed to study the role of tissue and of their chemical composition in plant development and in their end-use quality. In the present work, a new methodology is proposed to show and quantify the spatial variability of tissue composition in plant organs and to statistically compare different samples accounting for biological variability. Multispectral UV/visible autofluorescence imaging was used to acquire a macroscale image series based on the fluorescence of phenolic compounds in the cell wall.

View Article and Find Full Text PDF

This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation.

View Article and Find Full Text PDF

The proportion and composition of plant tissues in maize stems vary with genotype and agroclimatic factors and may impact the final biomass use. In this manuscript, we propose a quantitative histology approach without any section labelling to estimate the proportion of different tissues in maize stem sections as well as their chemical characteristics. Macroscopic imaging was chosen to observe the entire section of a stem.

View Article and Find Full Text PDF

Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated.

View Article and Find Full Text PDF

Background: The recalcitrance of lignocellulosics to enzymatic saccharification has been related to many factors, including the tissue and molecular heterogeneity of the plant particles. The role of tissue heterogeneity generally assessed from plant sections is not easy to study on a large scale. In the present work, dry fractionation of ground maize shoot was performed to obtain particle fractions enriched in a specific tissue.

View Article and Find Full Text PDF

Background: The cellular morphology of plant organs is strongly related to other physical properties such as shape, size, growth, mechanical properties or chemical composition. Cell morphology often vary depending on the type of tissue, or on the distance to a specific tissue. A common challenge in quantitative plant histology is to quantify not only the cellular morphology, but also its variations within the image or the organ.

View Article and Find Full Text PDF

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it.

View Article and Find Full Text PDF

Plant cell walls development is an integrated process during which several components are deposited successively. In the cell walls in grass, the accessibility of structural polysaccharides is limited by the cell walls structure and composition mainly as a result of phenolic compounds. Here, we studied the patterns of cell walls establishment in the internode supporting the ear in three distinct maize genotypes.

View Article and Find Full Text PDF

Phenolic compounds in fruit are involved in responses to biotic and abiotic stresses and are responsible for organoleptic properties. To establish the distribution of these secondary metabolites at the tissue and sub-cellular scales, mapping of fluorescence in apple epidermis and outer cortex tissue in cryogenic condition was performed after deep-UV excitation at 275 nm. Douce Moën and Guillevic cider apple varieties were sampled and frozen after harvest, after 30 days at 4 °C and after 20 days at room temperature.

View Article and Find Full Text PDF

Many plant tissues can be observed thanks to autofluorescence of their cell wall components. Hyperspectral autofluorescence imaging using confocal microscopy is a fast and efficient way of mapping fluorescent compounds in samples with a high spatial resolution. However a huge spectral overlap is observed between molecular species.

View Article and Find Full Text PDF

Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics.

View Article and Find Full Text PDF

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls.

View Article and Find Full Text PDF

This article comments on: Staedler YM, Kreisberger T, Manafzadeh S, Chartier M, Handschuh S, Pamperl S, Sontag S, Paun O, Schönenberger J. 2017. Novel computed tomography-based tools reliably quantify plant reproductive investment.

View Article and Find Full Text PDF

Tomato fruit texture depends on histology and cell wall architecture, both under genetic and developmental controls. If ripening related cell wall modifications have been well documented with regard to softening, little is known about cell wall construction during early fruit development. Identification of key events and their kinetics with regard to tissue architecture and cell wall development can provide new insights on early phases of texture elaboration.

View Article and Find Full Text PDF

Water status and distribution at subcellular level in whole apple fruit were evaluated by Magnetic Resonance Imaging (MRI) measurement of the multi-exponential transverse (T2) relaxation of water protons. Apparent microporosity, also estimated by MRI, provided mapping of gas distribution in fruit tissues. Measuring for the first time the multi-exponential relaxation of water and apparent tissue microporosity in whole fruit and combining these with histological measurements provided a more reliable interpretation of the origins of variations in the transverse relaxation time (T2) and better characterization of the fruit tissue.

View Article and Find Full Text PDF

Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy.

View Article and Find Full Text PDF

The cellular structure of plant tissues is a key parameter for determining their properties. While the morphology of cells can easily be described, few studies focus on the spatial distribution of different types of tissues within an organ. As plants have various shapes and sizes, the integration of several individuals for statistical analysis of tissues distribution is a difficult problem.

View Article and Find Full Text PDF

Background And Aims: The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit.

View Article and Find Full Text PDF

In this study, magnetic resonance imaging (MRI) was applied to study the structural aspects of the tomato fruit. The main study was performed on tomatoes (cv. Tradiro) using a 0.

View Article and Find Full Text PDF

Apple pieces were vacuum-impregnated with either a pectin methylesterase (PME) and calcium solution or with water prior to pasteurization. Pasteurized apple pieces impregnated with PME and calcium showed a significantly higher firmness. Moreover, solid state (13)C NMR spectroscopy of apple cell wall residues revealed an increase of their molecular rigidity.

View Article and Find Full Text PDF

It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes.

View Article and Find Full Text PDF

Tomato texture is one of the critical components for the consumer's perception of fruit quality. Texture is a complex character composed of several attributes that are difficult to evaluate and which change during fruit ripening. This study investigated the texture of tomato fruits at the rheological, sensory, morphological, and genetic levels, and attempted to correlate several parameters.

View Article and Find Full Text PDF

The time course and pattern of arabinoxylan deposition in the wheat (Triticum aestivum) endosperm during grain development were studied using Raman spectroscopy. The presence of arabinoxylans (AX) is detected at the beginning of grain filling. At this stage, AX appear more substituted than at the later stages.

View Article and Find Full Text PDF

Arabinoxylans (AX) are cell wall polysaccharides of complex structure involved in many aspects of wheat flour end uses. The study of the variations of AX structure can lead to the identification of genes involved in their biosynthesis, and thus in the control of the various aspects of grain quality related to their presence. A method is proposed to identify AX variations directly in whole grain by enzymatic degradation.

View Article and Find Full Text PDF

Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Marie-Francoise Devaux"

  • Recent research by Marie-Francoise Devaux primarily focuses on the histological and biochemical analysis of plant tissues, particularly maize and wheat, utilizing advanced imaging techniques to study tissue composition and enzymatic processes.
  • Her findings reveal significant variability in tissue structure and chemical composition that influence the recalcitrance of plant materials during enzymatic degradation, suggesting a deeper understanding of how these factors affect biomass quality and utilization.
  • Devaux's innovative methodologies, including multispectral imaging and real-time monitoring, enhance the quantitative analysis of plant tissues and provide insights into their morphological and chemical diversity, offering potential applications in agriculture and food science.