Publications by authors named "Marie-France Penet"

Purpose To examine the association between hypoxia and programmed cell death ligand 1 (PD-L1) expression using bioluminescence imaging (BLI) and PET/MRI in a syngeneic mouse model of triple-negative breast cancer (TNBC). Materials and Methods PET/MRI and optical imaging were used to determine the role of hypoxia in altering PD-L1 expression using a syngeneic TNBC model engineered to express luciferase under hypoxia. Results Imaging showed a close spatial association between areas of hypoxia and increased PD-L1 expression in the syngeneic murine (4T1) tumor model.

View Article and Find Full Text PDF
Article Synopsis
  • Twist is a gene that helps decide how cells will act in developing embryos, and its activity in breast cells can lead to cancer.
  • Researchers found that Twist makes a protein called choline kinase, which is linked to very aggressive types of breast cancer.
  • They also discovered that Twist and choline kinase work together to create changes in the tumor environment, making the cancer more dangerous by increasing specific compounds in the cells.
View Article and Find Full Text PDF

(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11bGr1, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11bGr1 MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice.

View Article and Find Full Text PDF

The availability of nanoparticles (NPs) to deliver small interfering RNA (siRNA) has significantly expanded the specificity and range of 'druggable' targets for precision medicine in cancer. This is especially important for cancers such as triple negative breast cancer (TNBC) for which there are no targeted treatments. Our purpose here was to understand the role of tumor vasculature and vascular endothelial growth factor (VEGF) overexpression in a TNBC xenograft in improving the delivery and function of siRNA NPs using in vivo as well as ex vivo imaging.

View Article and Find Full Text PDF

Multinuclear ex vivo magnetic resonance spectroscopy (MRS) of cancer cells, xenografts, human cancer tissue, and biofluids is a rapidly expanding field that is providing unique insights into cancer. Starting from the 1970s, the field has continued to evolve as a stand-alone technology or as a complement to in vivo MRS to characterize the metabolome of cancer cells, cancer-associated stromal cells, immune cells, tumors, biofluids and, more recently, changes in the metabolome of organs induced by cancers. Here, we review some of the insights into cancer obtained with ex vivo MRS and provide a perspective of future directions.

View Article and Find Full Text PDF
Article Synopsis
  • - Ovarian cancer remains a significant health concern, particularly in advanced stages, where current treatments often lead to recurrence and resistant disease, highlighting the need for new therapies.
  • - The study focuses on utilizing photoimmunotherapy (PIT) with a near-infrared dye targeting PD-L1 in a mouse model to investigate its efficacy in killing cancer cells.
  • - Results show that NIR-PIT is effective both in cultured cells and in live tumors, suggesting it could be a promising strategy for improving ovarian cancer treatment outcomes and warranting further research.
View Article and Find Full Text PDF

Purpose: The inhibition of immune checkpoints such as programmed cell death ligand-1 (PD-L1/CD274) with antibodies is providing novel opportunities to expose cancer cells to the immune system. Antibody based checkpoint blockade can, however, result in serious autoimmune complications because normal tissues also express immune checkpoints. As sequence-specific gene-silencing agents, the availability of siRNA has significantly expanded the specificity and range of "druggable" targets making them promising agents for precision medicine in cancer.

View Article and Find Full Text PDF

Background: Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance.

View Article and Find Full Text PDF

In magnetic resonance metabolic imaging, signal from the water content is frequently used for normalization to derive quantitative or semi-quantitative values of metabolites or tumors and tissues. high-resolution metabolic characterization of tumors with magnetic resonance spectroscopy (MRS) provides valuable information that can be used to drive the development of noninvasive MRS biomarkers and to identify metabolic therapeutic targets. Variability in the water content between tumor and normal tissue can result in over or underestimation of metabolite concentrations when assuming a constant water content.

View Article and Find Full Text PDF

Hypoxia is frequently observed in human prostate cancer, and is associated with chemoresistance, radioresistance, metastasis, and castrate-resistance. Our purpose in these studies was to perform hypoxia theranostics by combining in vivo hypoxia imaging and hypoxic cancer cell targeting in a human prostate cancer xenograft. This was achieved by engineering PC3 human prostate cancer cells to express luciferase as well as a prodrug enzyme, yeast cytosine deaminase, under control of hypoxic response elements (HREs).

View Article and Find Full Text PDF

Background: Cachexia is a major cause of morbidity in pancreatic ductal adenocarcinoma (PDAC) patients. Our purpose was to understand the impact of PDAC-induced cachexia on brain metabolism in PDAC xenograft studies, to gain new insights into the causes of cachexia-induced morbidity. Changes in mouse and human plasma metabolites were characterized to identify underlying causes of brain metabolic changes.

View Article and Find Full Text PDF

Ovarian cancer is a leading cause of death from gynecological malignancies. Although the prognosis is quite favorable if detected at an early stage, the vast majority of cases are diagnosed at an advanced stage, when 5-year survival rates are only 30-40%. Most recurrent ovarian tumors are resistant to traditional therapies underscoring the need for new therapeutic options.

View Article and Find Full Text PDF

Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine.

View Article and Find Full Text PDF
Article Synopsis
  • In 1955, scientists discovered that low oxygen levels (hypoxia) in lung cancers were linked to cancer treatment responses, especially with radiation therapy.
  • Over the years, researchers found that tumors are very different from each other and that understanding these differences can help create personalized treatments for cancer.
  • New imaging techniques have been developed to see how hypoxia affects tumors, which helps in finding ways to target it for better treatment outcomes and understand how it makes cancer more aggressive.
View Article and Find Full Text PDF

Because of the spatial and temporal heterogeneities of cancers, technologies to investigate cancer cells and the consequences of their interactions with abnormal physiological environments, such as hypoxia and acidic extracellular pH, with stromal cells, and with the extracellular matrix, under controlled conditions, are valuable to gain insights into the functioning of cancers. These insights can lead to an understanding of why cancers invade and metastasize, and identify effective treatment strategies. Here we have provided an overview of the applications of MRI/MRS/MRSI to investigate intact perfused cancer cells, their metabolism and invasion, and their interactions with stromal cells and the extracellular matrix.

View Article and Find Full Text PDF

Metastatic dissemination continues to be a major cause of prostate cancer (PCa) mortality, creating a compelling need to understand factors that play a role in the metastatic cascade. Since hypoxia plays an important role in PCa aggressiveness, we characterized patterns of hypoxia in the primary tumor and metastatic environments of a human PCa xenograft. We previously developed and characterized an imaging strategy based on the hypoxia response element (HRE)-driven expression of long-lived enhanced green fluorescent protein (EGFP) and short-lived luciferase (luc) fused to the oxygen-dependent degradation domain in human PCa PC-3 cells.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy among women in developed countries. Epithelial ovarian cancer has a poor prognosis, due to the aggressive characteristics of the disease combined with the lack of effective therapies. Options for late-stage ovarian cancer are limited and invasive, especially once malignant ascites develops.

View Article and Find Full Text PDF

Most diseases, especially cancer, would significantly benefit from precision medicine where treatment is shaped for the individual. The concept of theragnostics or theranostics emerged around 2002 to describe the incorporation of diagnostic assays into the selection of therapy for this purpose. Increasingly, theranostics has been used for strategies that combine noninvasive imaging-based diagnostics with therapy.

View Article and Find Full Text PDF

Hypoxia is frequently encountered in tumors and results in the stabilization of hypoxia inducible factors (HIFs). These factors transcriptionally activate genes that allow cells to adapt to hypoxia. In cancers, hypoxia and HIFs have been associated with increased invasion, metastasis, and resistance to chemo and radiation therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is really serious and usually diagnosed too late, so scientists are looking for better ways to find it early.
  • They tested 12 different markers in blood samples from 172 patients to see which could help detect ovarian cancer sooner.
  • The best results came from a combination of four markers (CA125, HE4, E-CAD, and IL-6), which could tell early-stage cancer apart from healthy people better than other tests.
View Article and Find Full Text PDF

Introduction: Malignant ascites (MA) is a major cause of morbidity that occurs in 37% of ovarian cancer patients. The accumulation of MA in the peritoneal cavity due to cancer results in debilitating symptoms and extremely poor quality of life. There is an urgent unmet need to expand the understanding of MA to design effective treatment strategies, and to improve MA diagnosis.

View Article and Find Full Text PDF

Effective delivery of siRNA to silence genes is a highly sought-after goal in the treatment of multiple diseases. Cyclooxygenase-2 (COX-2) is a major mediator of inflammation and its effective and specific downregulation has been of major interest to treat conditions ranging from auto-immune diseases to gastric inflammation and cancer. Here we developed a novel and efficient method to produce a multiple imaging reporter labeled cationic dextran nanopolymer with cleavable positive charge groups for COX-2 siRNA delivery.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2.

View Article and Find Full Text PDF

Central nervous system (CNS) tuberculosis (TB) is the most severe form of extra-pulmonary TB and disproportionately affects young children where the developing brain has a unique host response. New Zealand white rabbits were infected with Mycobacterium tuberculosis via subarachnoid inoculation at postnatal day 4-8 and evaluated until 4-6 weeks post-infection. Control and infected rabbit kits were assessed for the development of neurological deficits, bacterial burden, and postmortem microbiologic and pathologic changes.

View Article and Find Full Text PDF

Epithelial ovarian cancer remains the leading cause of death from gynecologic malignancy among women in developed countries. New therapeutic strategies evaluated with relevant preclinical models are urgently needed to improve survival rates. Here, we have assessed the effect of pantethine on tumor growth and metabolism using magnetic resonance imaging and high-resolution proton magnetic resonance spectroscopy (MRS) in a model of ovarian cancer.

View Article and Find Full Text PDF