Recent studies have proposed that adding quinine to water while performing Cherenkov volumetric dosimetry improves the skewed percent depth dose measurement. The aim of this study was to quantify the ability of quinine to convert directional Cherenkov emission to isotropic fluorescence and evaluate its contribution to the total emitted light. Aqueous solutions of quinine were prepared with distilled water at various concentrations (0.
View Article and Find Full Text PDFColloidal quantum dots (cQDs) are starting to be used in radiation detection, either combined with an organic fluorophore or used as a sole luminescent material. In the latter case, only few studies report on cQD-based detectors for medical applications, especially for scintillation dosimetry in radiation therapy. Moreover, most of these studies focus on the effects of radiation on cQD photoluminescence but do not look into the properties of the scintillation signal itself.
View Article and Find Full Text PDFScintillation dosimetry has evolved towards utilizing 3D liquid dosimeters to perform quality assurance verification of complex treatment configuration for photon, electron and proton beams. However, most of the fluorophores utilized in these dosimeters are alike and present limitations. This study aims to establish the profile of CdSe colloidal quantum dots (cQDs) that were given the role of the fluorophore in a binary liquid scintillation system.
View Article and Find Full Text PDF