Dynamic protein interaction networks such as DNA double-strand break (DSB) signaling are modulated by post-translational modifications. The DNA repair factor 53BP1 is a rare example of a protein whose post-translational modification-binding function can be switched on and off. 53BP1 is recruited to DSBs by recognizing histone lysine methylation within chromatin, an activity directly inhibited by the 53BP1-binding protein TIRR.
View Article and Find Full Text PDFP53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif.
View Article and Find Full Text PDFHigh-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents (i.e., platinum and poly(ADP-ribose) polymerase inhibitors [PARPis]) due to an underlying defect in homologous recombination (HR).
View Article and Find Full Text PDFMutations in the dyskerin gene (DKC1) cause X-linked dyskeratosis congenita (DC), a rare and fatal premature aging syndrome characterized by defective telomere maintenance. Dyskerin is a highly conserved nucleolar protein, and a component of the human telomerase complex that is essential for human telomerase RNA (hTR) stability. However, its regulation remains poorly understood.
View Article and Find Full Text PDFDuring the past decade, evolutionarily conserved microRNAs (miRNAs) have been characterized as regulators of almost every cellular process and signalling pathway. There is now emerging evidence that this new class of regulators also impinges on the DNA damage response (DDR). Both miRNAs and other small non-coding RNAs (ncRNAs) are induced at DNA breaks and mediate the repair process.
View Article and Find Full Text PDFTelomere maintenance is essential for cellular immortality, and most cancer cells maintain their telomeres through the enzyme telomerase. Telomeres and telomerase represent promising anticancer targets. However, 15% of cancer cells maintain their telomeres through alternative recombination-based mechanisms, and previous analyses showed that recombination-based telomere maintenance can be activated after telomerase inhibition.
View Article and Find Full Text PDFCellular viability requires telomere maintenance, which, in mammals, is mainly mediated by the reverse transcriptase telomerase. Telomerase core components are a catalytic subunit TERT and an RNA subunit TR (hTR in humans, mTR in mouse) that carries the template to generate telomeres de novo. Telomere dysfunction can lead to senescence or apoptosis and impairs the continued growth of immortal cancerous cell lines.
View Article and Find Full Text PDFThe indefinite growth of cancer cells requires telomere maintenance, which, in the majority of mammalian cancers is mediated via the enzyme telomerase. The core components of telomerase are a catalytic reverse transcriptase (hTERT in human, mTERT in mouse) and an RNA (TR) that contains the template for the replenishment of telomeres. Fundamental differences in human and mouse telomerase and telomere biology should be considered when using mouse models for the study of human cancers.
View Article and Find Full Text PDF