Publications by authors named "Marie-Esther N'Dri"

To persist in the blood circulation and to be available for mosquitoes, Plasmodium falciparum gametocytes modify the deformability and the permeability of their erythrocyte host via cyclic AMP (cAMP) signaling pathway. Cyclic nucleotide levels are tightly controlled by phosphodiesterases (PDE), however in Plasmodium these proteins are poorly characterized. Here, we characterize the P.

View Article and Find Full Text PDF

The persistence of erythrocytes infected with gametocytes in the bloodstream is closely related to the modulation of their mechanical properties. New drugs that increase the stiffness of infected erythrocytes may thus represent a novel approach to block malaria parasite transmission. The phosphodiesterase inhibitor tadalafil has been shown to impair the ability of infected erythrocytes to circulate in an model for splenic retention.

View Article and Find Full Text PDF

Plasmodium falciparum gametocytes modify the mechanical properties of their erythrocyte host to persist for several weeks in the blood circulation and to be available for mosquitoes. These changes are tightly regulated by the plasmodial phosphodiesterase delta that decreases both the stiffness and the permeability of the infected host cell. Here, we address the effect of the phosphodiesterase inhibitor tadalafil on deformability and permeability of gametocyte-infected erythrocytes.

View Article and Find Full Text PDF

To ensure the transport of nutrients necessary for their survival, Plasmodium falciparum parasites increase erythrocyte permeability to diverse solutes. These new permeation pathways (NPPs) have been extensively characterized in the pathogenic asexual parasite stages, however the existence of NPPs has never been investigated in gametocytes, the sexual stages responsible for transmission to mosquitoes. Here, we show that NPPs are still active in erythrocytes infected with immature gametocytes and that this activity declines along gametocyte maturation.

View Article and Find Full Text PDF

The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood.

View Article and Find Full Text PDF