Publications by authors named "Marie-Elena Kleemann"

The properties of nanoplasmonic structures depend strongly on their geometry, creating the need for high-precision control and characterization. Here, by exploiting the low activation energy of gold atoms on nanoparticle surfaces, we show how laser irradiation reshapes nanoparticle dimers. Time-course dark-field microspectroscopy allows this process to be studied in detail for individual nanostructures.

View Article and Find Full Text PDF

Quantitative applications of surface-enhanced Raman spectroscopy (SERS) often rely on surface partition layers grafted to SERS substrates to collect and trap-solvated analytes that would not otherwise adsorb onto metals. Such binding layers drastically broaden the scope of analytes that can be probed. However, excess binding sites introduced by this partition layer also trap analytes outside the plasmonic "hotspots".

View Article and Find Full Text PDF

Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature.

View Article and Find Full Text PDF

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong "acoustoplasmonic" coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators.

View Article and Find Full Text PDF

The mechanism by which light is emitted from plasmonic metals such as gold and silver has been contentious, particularly at photon energies below direct interband transitions. Using nanoscale plasmonic cavities, blue-pumped light emission is found to directly track dark-field scattering on individual nanoconstructs. By exploiting slow atomic-scale restructuring of the nanocavity facets to spectrally tune the dominant gap plasmons, this correlation can be measured from 600 to 900 nm in gold, silver, and mixed constructs ranging from spherical to cube nanoparticles-on-mirror.

View Article and Find Full Text PDF

Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms.

View Article and Find Full Text PDF

The enhanced nonlinear interactions that are driven by surface-plasmon resonances have readily been exploited for the purpose of optical frequency conversion in metallic structures. As of yet, however, little attention has been payed to the exact particulate nature of the conversion process. We show evidence that a surface plasmon and photon can annihilate simultaneously to generate a photon having the sum frequency.

View Article and Find Full Text PDF