Publications by authors named "Marie-Edith Chaboute"

Nuclear dynamics refers to global/local changes in the molecular and spatial organization of genomic DNA that can occur during development or in response to environmental stress signals and eventually impact genomic functions. In plants, nuclear dynamics relies notably on the connection of the nucleus with the cytoskeleton during development. It orchestrates genomic functions in response to developmental and environmental cues.

View Article and Find Full Text PDF

Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout.

View Article and Find Full Text PDF

How to get a metre of DNA into a tiny space while preserving its functional characteristics? This question seems easy to pose, but the answer is far from being trivial. Facing this riddle, salvation came from technical improvements in microscopy and hybridisation techniques applied to cytogenetics. Here, we would like to look into the past at one of these pure cytogenetics articles that makes a breakthrough in addressing this question in plant science.

View Article and Find Full Text PDF

The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin controls gene expression through epigenetic modifications, particularly focusing on histone H3, specifically lysine 27 (H3K27), which is modified by the Polycomb Repressive Complex 2 (PRC2) to regulate developmental genes.
  • Research using a non-modifiable version of H3K27 in Arabidopsis revealed severe developmental issues similar to PRC2 mutants, such as early flowering and increased callus formation.
  • The study uncovers new roles for H3K27 in determining plant cell functions and metabolic processes, indicating its significant impact on stem elongation and lignin composition.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the stiffness of soil affects the growth and cell development of plant roots and root hair cells, an important research area in plant biology.
  • - A new method called the microfluidic-like system (MLS) is introduced, allowing researchers to grow plantlets in gels of varying stiffness over extended periods while observing them via microscopy.
  • - MLS combines benefits of microfluidic technology such as precise control over growth conditions and high-resolution imaging, facilitating long-term quantitative research on how environmental rigidity influences root growth and cellular responses.
View Article and Find Full Text PDF

The maintenance of genetic information is important in eukaryotes notably through mechanisms occurring at the nuclear periphery where inner nuclear membrane proteins and nuclear pore-associated components are key factors regulating the DNA damage response (DDR). However, this aspect of DDR regulation is still poorly documented in plants. We addressed here how genomic stability is impaired in the () double mutants showing defective nuclear shaping.

View Article and Find Full Text PDF

Brassinosteroids (BRs) play key roles in diverse plant growth processes through a complex signaling pathway. Components orchestrating the BR signaling pathway include receptors such as kinases, transcription factors, protein kinases and phosphatases. The proper functioning of the receptor kinase BRI1 and the transcription factors BES1/BZR1 depends on their dephosphorylation by type 2A protein phosphatases (PP2A).

View Article and Find Full Text PDF

Root hairs (RHs) are tubular extensions of root epidermal cells that favour nutrient uptake and microbe interactions. RHs show a fast apical growth, constituting a unique single cell model system for analysing cellular morphodynamics. In this context, live cell imaging using microfluidics recently developed to analyze root development is appealing, although high-resolution imaging is still lacking to enable an investigation of the accurate spatiotemporal morphodynamics of organelles.

View Article and Find Full Text PDF

Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche.

View Article and Find Full Text PDF

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development.

View Article and Find Full Text PDF

Beyond its biochemical nature, the nucleus is also a physical object. There is accumulating evidence that its mechanics plays a key role in gene expression, cytoskeleton organization, and more generally in cell and developmental biology. Building on data mainly obtained from the animal literature, we show how nuclear mechanics may orchestrate development and gene expression.

View Article and Find Full Text PDF

In Arabidopsis (), the F-box protein F-BOX-LIKE17 (FBL17) was previously identified as an important cell-cycle regulatory protein. FBL17 is required for cell division during pollen development and for normal cell-cycle progression and endoreplication during the diploid sporophyte phase. FBL17 was reported to control the stability of the CYCLIN-DEPENDENT KINASE inhibitor KIP-RELATED PROTEIN (KRP), which may underlie the drastic reduction in cell division activity in both shoot and root apical meristems observed in loss-of-function mutants.

View Article and Find Full Text PDF

In animal single cells in culture, nuclear geometry and stiffness can be affected by mechanical cues, with important consequences for chromatin status and gene expression. This calls for additional investigation into the corresponding physiological relevance in a multicellular context and in different mechanical environments. Using the Arabidopsis root as a model system, and combining morphometry and micro-rheometry, we found that hyperosmotic stress decreases nuclear circularity and size and increases nuclear stiffness in meristematic cells.

View Article and Find Full Text PDF

Rice rss1 complementation assays show that wheat TdRL1 and RSS1 are true functional homologs. TdRL1 over-expression in Arabidopsis conferred salt stress tolerance and alleviated ROS accumulation. Plants have developed highly flexible adaptive responses to their ever-changing environment, which are often mediated by intrinsically disordered proteins (IDP).

View Article and Find Full Text PDF

Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1), which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies.

View Article and Find Full Text PDF

In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress.

View Article and Find Full Text PDF

The control of genomic maintenance during S phase is crucial in eukaryotes. It involves the establishment of sister chromatid cohesion, ensuring faithful chromosome segregation, as well as proper DNA replication and repair to preserve genetic information. In animals, nuclear periphery proteins - including inner nuclear membrane proteins and nuclear pore-associated components - are key factors which regulate DNA integrity.

View Article and Find Full Text PDF

Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle.

View Article and Find Full Text PDF

Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation.

View Article and Find Full Text PDF

Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes.

View Article and Find Full Text PDF

The spindle assembly checkpoint (SAC) is a refined surveillance mechanism which ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the spindle microtubules (MT). The SAC has been extensively studied in metazoans and yeast, but little is known about its role in plants. We identified proteins interacting with a MT-associated protein MAP65-3, which plays a critical role in organising mitotic MT arrays, and carried out a functional analysis of previously and newly identified SAC components.

View Article and Find Full Text PDF

The functional organization of the nuclear envelope (NE) is only just emerging in plants with the recent characterization of NE protein complexes and their molecular links to the actin cytoskeleton. The NE also plays a role in microtubule nucleation by recruiting γ-Tubulin Complexes (γ-TuCs) which contribute to the establishment of a robust mitotic spindle. γ-tubulin Complex Protein 3 (GCP3)-interacting proteins (GIPs) have been identified recently as integral components of γ-TuCs.

View Article and Find Full Text PDF