To better understand nonalcoholic steatohepatitis (NASH) disease progression and to evaluate drug targets and compound activity, we undertook the development of an 3D model to mimic liver architecture and the NASH environment. We have developed an preclinical 3D NASH model by coculturing primary human hepatocytes, human stellate cells, liver endothelial cells and Kupffer cells embedded in a hydrogel of rat collagen on a 96-well plate. A NASH-like environment was induced by addition of medium containing free fatty acids and tumor necrosis factor-α.
View Article and Find Full Text PDFObesity epidemic continues to spread and obesity rates are increasing in the world. In addition to public health effort to reduce obesity, there is a need to better understand the underlying biology to enable more effective treatment and the discovery of new pharmacological agents. Abhydrolase domain-containing protein 11 (ABHD11) is a serine hydrolase enzyme, localized in mitochondria, that can synthesize the endocannabinoid 2-arachidonoyl glycerol (2AG) in vitro.
View Article and Find Full Text PDFBackground: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic inflammatory disease often accompanied by impairment of sense of smell. This symptom has been somewhat overlooked, and its relationship to inflammatory cytokines, tissue compression, neuronal loss, and neurogenesis is still unclear.
Methods: In order to elucidate potential mechanisms leading to CRS in humans, we have established a type 2/T helper type 2 cell (Th2)-mediated allergic CRS mouse model, based on house dust mite (HDM) and Staphylococcus aureus enterotoxin B (SEB) sensitization.