Publications by authors named "Marie-Claude Lampron"

Cannabis use is continuously increasing in Canada, raising concerns about its potential impact on immunity. The current study assessed the impact of a cannabinoid mixture (CM) on B cells and the mechanisms by which the CM exerts its potential anti-inflammatory properties. Peripheral blood mononuclear cells (PBMCs) were treated with different concentrations of the CM to evaluate cytotoxicity.

View Article and Find Full Text PDF

Background: In a recent study, 13.8% of blood donors had reported cannabis use in the 72 hours preceding their donation, and these donors are not deferred under existing criteria in Canada. This high prevalence raises concerns about the potential impact of cannabis use on the quality of blood products.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness. To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.

View Article and Find Full Text PDF

Objective: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions.

View Article and Find Full Text PDF

Objective: Pulmonary arterial hypertension (PAH) is a debilitating disease associated with progressive vascular remodeling of distal pulmonary arteries leading to elevation of pulmonary artery pressure, right ventricular hypertrophy, and death. Although presenting high levels of DNA damage that normally jeopardize their viability, pulmonary artery smooth muscle cells (PASMCs) from patients with PAH exhibit a cancer-like proproliferative and apoptosis-resistant phenotype accounting for vascular lumen obliteration. In cancer cells, overexpression of the serine/threonine-protein kinase CHK1 (checkpoint kinase 1) is exploited to counteract the excess of DNA damage insults they are exposed to.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a degenerative arteriopathy that leads to right ventricular (RV) failure. BRD4 (bromodomain-containing protein 4), a member of the BET (bromodomain and extra-terminal motif) family, has been identified as a critical epigenetic driver for cardiovascular diseases. To explore the therapeutic potential in PAH of RVX208, a clinically available BET inhibitor.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with limited therapeutic options. Although exposed to stressful conditions, pulmonary artery (PA) smooth muscle cells (PASMCs) exhibit a "cancer-like" pro-proliferative and anti-apoptotic phenotype. HDAC6 is a cytoplasmic histone deacetylase regulating multiple pro-survival mechanisms and overexpressed in response to stress in cancer cells.

View Article and Find Full Text PDF

Objective: Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases.

View Article and Find Full Text PDF