Publications by authors named "Marie-Claude Lambert"

Background And Aims: Knowledge of thermal acclimation of physiological processes of boreal tree species is necessary to determine their ability to adapt to predicted global warming and reduce the uncertainty around the anticipated feedbacks of forest ecosystems and global carbon cycle to climate change. The objective of this work was to examine the extent of thermal acclimation of net photosynthesis (An) and dark respiration (Rd) of two distant white spruce (Picea glauca) seed sources (from south and north of the commerial forest zone in Québec) in response to latitudinal and seasonal variations in growing conditions.

Methods: The temperature responses of An, its biochemical and biophysical limitations, and Rd were measured in 1-year-old needles of seedlings from the seed sources growing in eight forest plantations along a regional thermal gradient of 5.

View Article and Find Full Text PDF

Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted.

View Article and Find Full Text PDF

An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily.

View Article and Find Full Text PDF

Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada.

View Article and Find Full Text PDF