Vγ9Vδ2 T lymphocytes are the major human peripheral γδ T cell subset, with broad reactivity against stressed human cells, including tumor cells. Vγ9Vδ2 T cells are specifically activated by small phosphorylated metabolites called phosphoantigens (PAg). Stress-induced changes in target cell PAg levels are specifically detected by butyrophilin (BTN)3A1, using its intracellular B30.
View Article and Find Full Text PDFIn humans, Vγ9Vδ2 T cells detect tumor cells and microbial infections, including Mycobacterium tuberculosis, through recognition of small pyrophosphate containing organic molecules known as phosphoantigens (pAgs). Key to pAg-mediated activation of Vγ9Vδ2 T cells is the butyrophilin 3A1 (BTN3A1) protein that contains an intracellular B30.2 domain critical to pAg reactivity.
View Article and Find Full Text PDFSplicing of the FGFR2 K-SAM exon is repressed by hnRNP A1 bound to the exon and activated by TIA-1 bound to the downstream intron. Both proteins are expressed similarly by cells whether they splice the exon or not, so it is important to know which one is dominant. To answer this question, we used bacteriophage PP7 and bacteriophage MS2 coat fusions to tether hnRNP A1 and TIA-1 to distinct sites on the same pre-mRNA molecule.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2007
In 293 cells, splicing of the human fibroblast growth factor receptor-2 K-SAM alternative exon is inefficient, but can be made efficient by provoking TIA-1 binding to the U-rich IAS1 sequence downstream from the exon's 5' splice site. We show here that TIA-1 domains known to interact with U1 snRNP and to recruit it to 5' splice sites in vitro are required for TIA-1 activation of K-SAM exon splicing in vivo. We further show that tethering downstream from the K-SAM exon a fusion between the U1 snRNP component U1C and the bacteriophage MS2 coat protein provokes IAS1-dependent exon splicing, and present evidence that the fusion functions after its incorporation into U1 snRNP.
View Article and Find Full Text PDFTumor cells often escape immunosurveillance by down-regulating MHC class I molecule expression. For human Vgamma9Vdelta2 T cells, a major peripheral blood T cell subset with broad antitumor reactivity, this down-regulation can affect signals transmitted by both the inhibitory and the activating MHC class I and Ib-specific NK receptors (NKRs) that these lymphocytes frequently express. To assess the overall impact of MHC down-regulation on Vgamma9Vdelta2 T cell activation, we used stable beta(2)-microglobulin knockdown to generate tumor cells with a approximately 10-fold down-modulation of all MHC class I molecules.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2005
Alternative CD44 exons v8, v9, and v10 are spliced as a block in epithelial cells (for example SVK14 cells), but can be skipped as a block by other cells. Using a minigene approach, we show that downstream intronic UGG repeats participate in activation of v8 exon splicing in SVK14 cells. The repeats can activate splicing of a heterologous exon in SVK14 cells and act additively with a previously described v8 exon splicing enhancer in this context.
View Article and Find Full Text PDFThe CD44 gene alternative exons v8, v9, and v10 are frequently spliced as a block by epithelial cells. By transfecting minigenes containing only one of these alternative exons, we show that splicing of each of them is under cell type-specific control. By using minigenes carrying short block mutations within exons v8 and v9, we detected a candidate exon splicing enhancer in each of these exons.
View Article and Find Full Text PDFTIA-1 and TIAR are a pair of related RNA-binding proteins which have been implicated in apoptosis. We show that chicken DT40 cells with both tia-1 alleles and one tiar allele disrupted (tia-1(-/-)tiar(-/+) cells) are viable. However, their growth and survival in medium containing low serum levels is significantly reduced compared with DT40 cells.
View Article and Find Full Text PDF