Type 1 diabetes (T1D) is characterized by a chronic, progressive autoimmune attack against pancreas-specific antigens, effecting the destruction of insulin-producing β-cells. Here we show interleukin-2 (IL-2) is a non-pancreatic autoimmune target in T1D. Anti-IL-2 autoantibodies, as well as T cells specific for a single orthologous epitope of IL-2, are present in the peripheral blood of non-obese diabetic (NOD) mice and patients with T1D.
View Article and Find Full Text PDFThe first signs of autoimmune activation leading to β-cell destruction in type 1 diabetes (T1D) appear during the first months of life. Thus, the perinatal period offers a suitable time window for disease prevention. Moreover, thymic selection of autoreactive T cells is most active during this period, providing a therapeutic opportunity not exploited to date.
View Article and Find Full Text PDFDespite encouraging results in the NOD mouse, type 1 diabetes prevention trials using subcutaneous insulin have been unsuccessful. To explain these discrepancies, 3-week-old NOD mice were treated for 7 weeks with subcutaneous insulin at two different doses: a high dose (0.5 U/mouse) used in previous mouse studies; and a low dose (0.
View Article and Find Full Text PDFDetection of human Ag-specific T cells is limited by sensitivity and blood requirements. As dendritic cells (DCs) can potently stimulate T cells, we hypothesized that their induction in PBMCs in situ could link Ag processing and presentation to Ag-specific T-cell activation. To this end, unfractionated PBMCs (fresh or frozen) or whole blood were incubated for 48 hours with protein or peptide Ag together with different DC-activating agents to rapidly and sequentially induce, pulse, and mature DCs.
View Article and Find Full Text PDFAutoimmune diseases develop in selected normal mouse strains when thymectomy (Tx) is performed at 3 days of age (d3-Tx). Insufficient T cell regulation after Tx may result from a defect in regulatory T (Treg) cells or from an augmented effector T (Teff) cell number/pathogenicity. We have previously shown that Tx at 3 wk (wk3-Tx), the age of massive islet Ag release, accelerates diabetes onset.
View Article and Find Full Text PDFLymphopenia is thought to be a major cause of tolerance breakdown. In a lymphopenic environment, self-recognition events induce some T cells to expand strongly (a mechanism known as spontaneous proliferation). In this study, we show that in C57BL/6 mice, the repertoire resulting from lymphopenia-induced spontaneous CD4(+) T-cell proliferation included a proportion of regulatory T cells as large as that observed in a normal mouse, and no autoimmune disorder was observed.
View Article and Find Full Text PDFThe number and function of immunoregulatory invariant NKT (iNKT) cells are genetically controlled. A defect of iNKT cell ontogeny and function has been implicated as one causal factor of NOD mouse susceptibility to type 1 diabetes. Other factors of diabetes susceptibility, such as a decrease of regulatory T cell function or an increase in TLR1 expression, are corrected in diabetes-resistant Idd6 NOD.
View Article and Find Full Text PDFThe genetic locus Idd6 confers susceptibility to the spontaneous development of type 1 diabetes in the NOD mouse. Our studies on disease resistance of the congenic mouse strain NOD.C3H 6.
View Article and Find Full Text PDFNonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that results from the destruction of insulin secreting beta cells by diabetogenic T cells. The time and location of the encounter of autoantigen(s) by naive autoreactive T cells in normal NOD mice are still elusive. To address these issues, we analyzed diabetes development in mice whose spleen or pancreatic lymph nodes (panLNs) had been removed.
View Article and Find Full Text PDF