A 2.3-L bioreactor was specially adapted to grow hyperthermophilic microorganisms under controlled conditions of temperature, pH, redox potential and dissolved O(2). Using this bioreactor regulated at 80°C and pH 7.
View Article and Find Full Text PDFWe studied the effect of hydrogen peroxide (H(2)O(2)) stress on the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. In a lactate/sulfate medium, growth was affected from 0.1 mM H(2)O(2) and totally inhibited at 0.
View Article and Find Full Text PDFThe characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.
View Article and Find Full Text PDFSulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas.
View Article and Find Full Text PDFIn the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH), the genome sequencing revealed the presence of three operons encoding formate dehydrogenases. fdh1 encodes an alphabetagamma trimeric enzyme containing 11 heme binding sites; fdh2 corresponds to an alphabetagamma trimeric enzyme with a tetrahemic subunit; fdh3 encodes an alphabeta dimeric enzyme. In the present work, spectroscopic measurements demonstrated that the reduction of cytochrome c(553) was obtained in the presence of the trimeric FDH2 and not with the dimeric FDH3, suggesting that the tetrahemic subunit (FDH2C) is essential for the interaction with this physiological electron transfer partner.
View Article and Find Full Text PDFThe method of two-dimensional protein gel electrophoresis was used to evaluate the changes at the proteins level following oxygen exposure of the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Fifty-seven proteins showed significant differential expression. The cellular concentration of 35 proteins decreased while that of nineteen increased as a specific consequence of oxidative conditions.
View Article and Find Full Text PDFSulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, have developed a set of reactions allowing them to survive in oxic environments and even to reduce molecular oxygen to water. D. vulgaris contains a cytoplasmic superoxide reductase (SOR) and a periplasmic superoxide dismutase (SOD) involved in the elimination of superoxide anions.
View Article and Find Full Text PDFPhylogenetic analysis of constituent proteins of Rieske/cytochrome b complexes [Schütz et al. (2000) J. Mol.
View Article and Find Full Text PDFLysines 9 and 10 in Desulfuromonas acetoxidans cytochrome c7, which could be involved in the interaction mechanism with the redox partners, have been replaced by alanine residues using site-directed mutagenesis. The solution structure of the fully oxidized form of K9-10A cytochrome c7, which is paramagnetic with three paramagnetic centers, has been determined via 1H NMR. The assignment of the spectra has been performed through an automatic program whose algorithm and strategy are here described.
View Article and Find Full Text PDF