Treatment wetlands are recognized as an effective technology for mitigating the impacts of urban runoff. However, there is no consensus on the design guidelines, and the effects of some design features, such as the underdrain system, remain unexplored. A simple analog model has been developed to mimic the underdrain network (when operating at saturation) and to evaluate the spatial heterogeneity of the flow entering it.
View Article and Find Full Text PDFEvapotranspiration (ET) is an important process in green stormwater infrastructure (GSI) aiming to reduce urban drainage, to promote cooling and/or to contribute to an urban hydrological balance restoration closer to the natural one. However, on these structures and particularly on green roofs (GR), its evaluation remains challenging and subject to discussion. Estimates of ET by water balance, energy balance, and an ET chamber were performed on five different plots of a full-scale experimental green roof in Trappes (France).
View Article and Find Full Text PDFUrban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns.
View Article and Find Full Text PDFThis study addresses soil contamination in vegetated road shoulders with diffuse inflow of runoff. It aims (i) to characterize the spatial distribution of three metals (copper, lead, zinc) and PAHs, and (ii) to identify influencing factors for the inter-site differences. An extensive sampling campaign was carried out on forty road segments in the Paris region, targeting various distances and soil depths.
View Article and Find Full Text PDFRecently, emphasis has been placed on finding a reliable estimation of soil water content. In this study, two capacitance sensors EC5 and 5TE (METER Group) were utilized. These sensors provide many benefits relative to other sensors in that they are cost-effective and very economical regarding energy use, operate at a high measurement frequency of 70 MHz, and are dedicated to measuring at a small volume because of their small size.
View Article and Find Full Text PDFAmong the processes governing contaminant retention in soil-based Sustainable Urban Drainage Systems (SUDS), quantifying the relative contribution of particle settling and filtration requires a tracer of runoff-generated solids. Since zirconium (Zr) is a widely used geochemical invariant in pedological approaches, with few anthropogenic sources, the present investigation aims to assess whether its use may be extended to sediment identification in SUDS. High-resolution horizontal and vertical soil sampling was carried out in 11 infiltration systems, as well as in road-deposited sediment.
View Article and Find Full Text PDFRoad runoff is contaminated by various micropollutants and may be treated using low impact development techniques, such as stormwater biofilters. Better understanding the processes, such as filtration, sorption and leaching, which affect pollutants in these systems is essential to reliably predicting treatment performance and optimizing system design. Field data from an in situ monitoring campaign, wherein dissolved and particulate concentrations of a wide range of micropollutants (trace metals, polycyclic aromatic hydrocarbons, bisphenol-A, alkylphenols and phthalates) were characterized in untreated road runoff and biofilter outlets for 19 rain events, are used to explore transport and retention processes.
View Article and Find Full Text PDFThe treatment efficiency of a vegetative filter strip and a biofiltration swale treating heavily loaded road runoff are evaluated. Concentrations measured in water drained from the two systems are compared to those in untreated road runoff collected from a reference catchment for a wide range of contaminants including organic carbon, nutrients (N and P), trace metals, and organic micropollutants (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), alkylphenols, bisphenol-A, phthalates), in both total and dissolved phases. Predominantly particulate pollutants, including Pb, Zn and PAH, were very efficiently removed (around 90%) for most events.
View Article and Find Full Text PDFAlkylphenol (AP) and bisphenol A (BPA) contamination of urban runoff has already been established. Potential sources of these contaminants in runoff are endogenous to the urban watershed and are mainly related to traffic and leaching from construction materials. This article summarizes the results of experimental work carried out on a selection of building materials, automotive materials, and consumables, which can be in contact with rain, to assess their potential emission of alkylphenols, alkylphenol ethoxylates, and bisphenol A into runoff.
View Article and Find Full Text PDFSewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment.
View Article and Find Full Text PDFThis article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS.
View Article and Find Full Text PDFThe increasing use of infiltration-based systems for stormwater management questions the soil's ability to act as a long-term filter for runoff contaminants, and brings about operational matters regarding the most effective maintenance practices to enhance contaminant retention in SUDS. This paper reports the vertical extent of metal and PAH contamination in the soil of seven source-control devices in operation for more than 10 years, assessed via a two-step sampling strategy to optimize the representativeness of the contamination profiles. Metal distribution was typically characterized by a significant surface buildup, followed by a decrease in concentrations with increasing depth, usually coming close to the background values.
View Article and Find Full Text PDFIn order to determine the relative importance of a vegetative filter strip and a biofiltration swale in a treatment train for road runoff, US EPA Storm Water Management Model was used to model infiltration and runoff from the filter strip. The model consisted of a series of subcatchments representing the road, the filter strip and the side-slopes of the swale. Simulations were carried out for different rain scenarios representing a variety of climatic conditions.
View Article and Find Full Text PDFStormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation.
View Article and Find Full Text PDFThe increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments.
View Article and Find Full Text PDFThis study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel.
View Article and Find Full Text PDFThe suitability of a commonly used accumulation and wash-off model for continuous modelling of urban runoff contamination was evaluated based on 11-month turbidity and flow-rate records from an urban street. Calibration and uncertainty analysis were performed using a Markov Chain Monte-Carlo sampling method for both suspended solids loads (discharge rates) and concentration modelling. Selected models failed at replicating suspended solids concentration over the complete monitoring period.
View Article and Find Full Text PDFOver the last decade, a growing interest has been shown toward innovative stormwater management practices, breaking away from conventional "end of pipe" approaches (based on conveying water offsite to centralized detention facilities). Innovative strategies, referred to as sustainable urban drainage systems, low impact development (LID) or green infrastructures, advocating for management of runoff as close to its origin as possible, have therefore gained a lot of popularity among practitioners and public authorities. However, while the need for pollution control is generally well accepted, there is no wide agreement about management criteria to be given to developers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2014
The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region.
View Article and Find Full Text PDFThree catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics.
View Article and Find Full Text PDFToday, urban runoff is considered as an important source of environmental pollution. Roofing materials, in particular, the metallic ones, are considered as a major source of urban runoff metal contaminations. In the context of the European Water Directive (2000/60 CE), an accurate evaluation of contaminant flows from roofs is thus required on the city scale, and therefore the development of assessment tools is needed.
View Article and Find Full Text PDFThis study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry.
View Article and Find Full Text PDFA method for benzalkonium analysis has been developed to measure benzalkonium concentration in dissolved and particulate fractions from urban runoff samples. The analysis was performed by liquid chromatography coupled with mass spectrometry (LC-MS/MS). The dissolved matrix was extracted by Solid Phase Extraction (SPE), with cationic exchange and the particles by microwave extraction with acidified methanol.
View Article and Find Full Text PDFRiver basin metal pollution originates from heavy industries (plating, automobile) and from urban sources (Paris conurbation: 2740 km(2), 9.47 million inhabitants). The natural sources of metal have been found to be limited due to sedimentary nature of this catchment and to the very low river sediment transport (10 t km(-2) y(-1)).
View Article and Find Full Text PDF