Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. Although fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata.
View Article and Find Full Text PDFUnlabelled: Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata.
View Article and Find Full Text PDFBiological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate.
View Article and Find Full Text PDFPlant cytokinesis, which fundamentally differs from that in animals, requires the outward expansion of a plasma membrane precursor named the cell plate. How the transition from a cell plate to a plasma membrane occurs remains poorly understood. Here, we report that the acquisition of plasma membrane identity occurs through lateral patterning of the phosphatidylinositol 4,5-bisphosphate PI(4,5)P at the newly formed cell plate membrane.
View Article and Find Full Text PDFPromoting asymmetric division through microtubule dynamics establishes cell fate.
View Article and Find Full Text PDFCurr Opin Plant Biol
June 2023
Plants have developed fine-tuned cellular mechanisms to respond to a variety of intracellular and extracellular signals. These responses often necessitate the rearrangement of the plant cytoskeleton to modulate cell shape and/or to guide vesicle trafficking. At the cell periphery, both actin filaments and microtubules associate with the plasma membrane that acts as an integrator of the intrinsic and extrinsic environments.
View Article and Find Full Text PDFMembrane lipids, and especially phosphoinositides, are differentially enriched within the eukaryotic endomembrane system. This generates a landmark code by modulating the properties of each membrane. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] specifically accumulates at the plasma membrane in yeast, animal, and plant cells, where it regulates a wide range of cellular processes including endocytic trafficking.
View Article and Find Full Text PDFThe plant cytoskeleton regulates fundamental biological processes, including cell division. How to experimentally perturb the cytoskeleton is a key question if one wants to understand the role of both actin filaments (AFs) and microtubules (MTs) in a given biological process. While a myriad of mutants are available, knock-out in cytoskeleton regulators, when nonlethal, often produce little or no phenotypic perturbation because such regulators are often part of a large family, leading to functional redundancy.
View Article and Find Full Text PDFCell division is a tightly regulated mechanism, notably in tissues where malfunctions can lead to tumour formation or developmental defects. This is particularly true in land plants, where cells cannot relocate and therefore cytokinesis determines tissue topology. In plants, cell division is executed in radically different manners than in animals, with the appearance of new structures and the disappearance of ancestral mechanisms.
View Article and Find Full Text PDFPhosphoinositides (PIs) have critical roles in various cellular, physiological, developmental, pathological, and infectious processes. They are signaling phospholipids that can affect every aspect of membrane biology, including protein function (e.g.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Cell division in plants consists of separating the mother cell in two daughter cells by the centrifugal growth of a new wall. This process involves the reorganization of the structural elements of the cell, namely the microtubules and actin cytoskeleton which allow the coordination, the orientation, and the progression of mitosis. In addition to its implication in those plant-specific structures, the actin cytoskeleton, in close association with the plasma membrane, exhibits specific patterning at the cortex of the dividing cells, and might act as a signaling component.
View Article and Find Full Text PDFActivation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive.
View Article and Find Full Text PDFAt the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification.
View Article and Find Full Text PDFPhosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown.
View Article and Find Full Text PDFPhosphatidylinositol 4,5-bisphosphate (PI(4,5)P) is a low-abundance membrane lipid essential for plasma membrane function. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P production is involved in development, immunity and reproduction. However, phospholipid synthesis is highly intricate.
View Article and Find Full Text PDFPhosphoinositides are key players from which the various membranes of the cells acquire their identity. The relative accumulation of these low-abundant anionic phospholipids in the cytosolic leaflet of the plasma membrane and of various organelles generates a landmark code, responsible for the selective recruitment of extrinsic proteins at given membranes. One of the key players in the protein/lipid interaction at the plasma membrane in plant cells, is phosphatidylinositol 4-phosphate (PI4P), which patterns the recruitment of effector proteins from the plasma membrane to organelles along the endocytic pathway.
View Article and Find Full Text PDFFront Plant Sci
April 2019
How cells position their division plane is a critical component of cell division. Indeed, it defines whether the two daughter cells divide symmetrically (with equal volumes) or not, and as such is critical for cell differentiation and lineage specification across eukaryotes. However, oriented cell divisions are of special significance for organisms with cell walls, such as plants, because their cells are embedded and cannot relocate.
View Article and Find Full Text PDFMembrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity.
View Article and Find Full Text PDFHere we describe a protocol that enables to automatically perform time-lapse imaging of growing root tips for several hours. Plants roots expressing fluorescent proteins or stained with dyes are imaged while they grow using automatic movement of the microscope stage that compensates for root growth and allows to follow a given region of the root over time. The protocol makes possible the image acquisition of multiple growing root tips, therefore increasing the number of recorded mitotic events in a given experiment.
View Article and Find Full Text PDFMany signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories.
View Article and Find Full Text PDFThe oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis.
View Article and Find Full Text PDFMitosis which is a major step during plant development can also be observed in physiopathological conditions. During the compatible interaction between the root-knot nematode Meloidogyne incognita and its host Arabidopsis, the pathogen induce through repeated divisions without complete cytokinesis the formation of hypertrophied and multinucleate feeding cells, named giant cells. Due to the presence of hypertrophied plant cell material surrounding the giant cells, classical live cell imaging gave therefore very poor resolution.
View Article and Find Full Text PDFThe downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear.
View Article and Find Full Text PDF