Publications by authors named "Marie-Carmen Molina"

FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells.

View Article and Find Full Text PDF

In the study of previously reported modulators of CFTR chloride channels that are cyclic methylglyoxal (MG) diadducts (CMGD) to aromatic α-aminoazaheterocycles, we optimized a new expeditious one pot route for preparing in water novel aromatic polycyclic azaheterocycles and described 5-pyrimidinols antioxidants through the formation of 2-oxoaldehyde diadducts to aromatic α-aminoazaheterocycles, amidines, guanidines and thiourea. In regard to the importance as biomarkers of diabetic complications of the 5-pyrimidinols "argpyrimidines" formed in proteins from MG and arginine residues, we demonstrated that argpyrimidines are slowly formed under physiological conditions from CMGD to arginine derivatives according to the synthesis route described. Among the 5-pyrimidinol derivatives prepared, two polycyclic derivatives appeared to inhibit strongly the activity of CFTR channels in wt-CHO cells.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) represents the main Cl(-) channel in the apical membrane of epithelial cells for cAMP-dependent Cl(-) secretion. Here we report on the synthesis and screening of a small library of nontoxic alpha-aminoazaheterocycle-methylglyoxal adducts, inhibitors of wild-type (WT) CFTR and G551D-, G1349D-, and F508del-CFTR Cl(-) channels. In whole-cell patch-clamp experiments of Chinese hamster ovary (CHO) cells expressing WT-CFTR, we recorded rapid and reversible inhibition of forskolin-activated CFTR currents in the presence of the adducts 5a and 8a,b at 10 pM concentrations.

View Article and Find Full Text PDF