The extensive characterization of tissue mineralization in the context of bone regeneration represents a significant challenge, given the numerous modalities that are currently available for analysis. Here, we propose a workflow for a comprehensive evaluation of new bone formation using a relevant large animal osseous ex vivo explant. A bone defect (diameter = 3.
View Article and Find Full Text PDFOsteoarthritis (OA) is an incurable, painful, and debilitating joint disease affecting over 500 million people worldwide. The OA joint tissues are infiltrated by various immune cells, particularly macrophages, which are able to induce or perpetuate inflammation. Notably, synovitis and its macrophage component represent a target of interest for developing treatments.
View Article and Find Full Text PDFThe TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes.
View Article and Find Full Text PDFJoint diseases affect hundreds of millions of people worldwide, and their prevalence is constantly increasing. To date, despite recent advances in the development of therapeutic options for most rheumatic conditions, a significant proportion of patients still lack efficient disease management, considerably impacting their quality of life. Through the spectrum of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and osteoarthritis (OA) as quintessential and common rheumatic diseases, this review first provides an overview of their epidemiological and clinical features before exploring how the better definition of clinical phenotypes has helped their clinical management.
View Article and Find Full Text PDFObjectives: Osteoarthritis (OA) is a debilitating and heterogeneous condition, characterized by various levels of articular cartilage degradation, osteophytes formation, and synovial inflammation. Multiple evidences suggest that synovitis may appear early in the disease development and correlates with disease severity and pain, therefore representing a relevant therapeutic target. In a typical synovitis-driven joint disease, namely rheumatoid arthritis (RA), several pathotypes have been described by our group and associated with clinical phenotypes, disease progression, and response to therapy.
View Article and Find Full Text PDFBackground: Osteoarthritis is an age-related disease that currently faces a lack of symptomatic treatment. Inflammation, which is mainly sustained by pro-inflammatory cytokines such as IL-1b, TNF, and IL-6, plays an important role in osteoarthritis progression. In this context, pro-inflammatory cytokines are widely used to mimic the inflammatory component of osteoarthritis in vitro.
View Article and Find Full Text PDFThe MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible.
View Article and Find Full Text PDFAims: To determine the relationship between PTX3 systemic and synovial levels and the clinical features of rheumatoid arthritis (RA) in a cohort of early, treatment naïve patients and to explore the relevance of PTX3 expression in predicting response to conventional-synthetic (cs) Disease-Modifying-Anti-Rheumatic-Drugs (DMARDs) treatment.
Methods: PTX3 expression was analyzed in 119 baseline serum samples from early naïve RA patients, 95 paired samples obtained 6-months following the initiation of cs-DMARDs treatment and 43 healthy donors. RNA-sequencing analysis and immunohistochemistry for PTX3 were performed on a subpopulation of 79 and 58 synovial samples, respectively, to assess PTX3 gene and protein expression.
Osteoarthritis affects hundreds of millions of people worldwide, and its prevalence is constantly increasing. While there is currently no treatment that can alter the course of the disease, promising therapeutic strategies and novel targets are being investigated. Innovative cell therapies are already reaching clinical trials, and recent progress in our understanding of the disease is opening new routes for gene therapy.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting joints and causing progressive damage and disability. Macrophages are of critical importance in the initiation and perpetuation of synovitis in RA, they can function as antigen presenting cells leading to T-cell dependent B-cell activation, assume a variety of inflammatory cell states with the production of destructive cytokines, but also contribute to tissue homeostasis/repair. The recent development of high-throughput technologies, including bulk and single cells RNA-sequencing, has broadened our understanding of synovial cell diversity, and opened novel perspectives to the discovery of new potential therapeutic targets in RA.
View Article and Find Full Text PDFObjectives: To determine the relationship between synovial versus skin transcriptional/histological profiles in patients with active psoriatic arthritis (PsA) and explore mechanistic links between diseased tissue pathology and clinical outcomes.
Methods: Twenty-seven active PsA patients were enrolled in an observational/open-label study and underwent biopsies of synovium and paired lesional/non-lesional skin before starting anti-tumour necrosis factor (TNF) (if biologic-naïve) or ustekinumab (if anti-TNF inadequate responders). Molecular analysis of 80-inflammation-related genes and protein levels for interleukin (IL)-23p40/IL-23p19/IL-23R were assessed by real-time-PCR and immunohistochemistry, respectively.
To assess whether the histopathological features of the synovium before starting treatment with the TNFi certolizumab-pegol could predict clinical outcome and examine the modulation of histopathology by treatment. Thirty-seven RA patients fulfilling UK NICE guidelines for biologic therapy were enrolled at Barts Health NHS trust and underwent synovial sampling of an actively inflamed joint using ultrasound-guided needle biopsy before commencing certolizumab-pegol and after 12-weeks. At 12-weeks, patients were categorized as responders if they had a DAS28 fall >1.
View Article and Find Full Text PDFObjectives: IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy.
View Article and Find Full Text PDFThe plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages.
View Article and Find Full Text PDFThe interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases.
View Article and Find Full Text PDFPsoriasis is a chronic systemic inflammatory disease causing erythematosus and scaly skin plaques; up to 30% of patients with psoriasis develop Psoriatic Arthritis (PsA), which is characterised by inflammation and progressive damage of the peripheral joints and/or the spine and/or the entheses. The pathogenic mechanisms driving the skin disorder in psoriasis and the joint disease in PsA are sustained by the activation of inflammatory pathways that can be overlapping, but also, at least partially, distinct. Cytokines members of the IL-23/IL-17 family, critical in the development of autoimmunity, are abundantly expressed within the cutaneous lesions but also seem to be involved in chronic inflammation and damage of the synovium though, as it will be here discussed, not in all patients.
View Article and Find Full Text PDFIL-38 is the most recently discovered cytokine of the IL-1 family and is considered a potential inhibitor of the IL-1 and Toll-like receptor families. IL-38 exerts anti-inflammatory properties, especially on macrophages, by inhibiting secretion of pro-inflammatory cytokines, leading to reduced T-lymphocyte TH17 maturation. IL-38 has been studied most extensively in the context of chronic inflammatory diseases, particularly arthritis, where it is considered an attractive new drug candidate.
View Article and Find Full Text PDFSpondyloarthritis (SpA) is a relatively common chronic inflammatory joint disorder, with a prevalence of about 0.2-0.5% worldwide.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2015
Spondyloarthritis (SpA) is a chronic inflammatory joint disorder that initiates at the enthesis, where tendons attach to bone through a fibrocartilage zone. At late stages, excessive bone apposition appears within the diseased enthesis. Because Wnt5a participates to normal bone formation and appears related to inflammatory processes, we investigated the role of this Wnt growth factor in inflammation-associated ossification in SpA.
View Article and Find Full Text PDFThe pathogenesis of inflammatory skin diseases such as psoriasis involves the release of numerous proinflammatory cytokines, including members of the IL-1 family. Here we report overexpression of IL-1α, IL-1β, and IL-1 receptor antagonist mRNA, associated to expression of IL-23p19, IL-17A, and IL-22 in skin cells, upon topical application of the TLR7 agonist imiquimod (IMQ) in C57BL/6J mice. IMQ-induced skin inflammation was partially reduced in mice deficient for both IL-1α/IL-1β or for IL-1 receptor type 1 (IL-1R1), but not in IL-1α- or IL-1β-deficient mice, demonstrating the redundant activity of IL-1α and IL-1β for skin inflammation.
View Article and Find Full Text PDFDifferent macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase.
View Article and Find Full Text PDFBackground: Macrophages and synovial fibroblasts (SF) are two major cells implicated in the pathogenesis of rheumatoid arthritis (RA). SF could be a source of cytokines and growth factors driving macrophages survival and activation. Here, we studied the effect of SF on monocyte viability and phenotype.
View Article and Find Full Text PDF