Publications by authors named "Marie-Anne Rameix Welti"

Human respiratory syncytial virus (RSV) is an enveloped RNA virus and the leading viral agent responsible for severe pediatric respiratory infections worldwide. Identification of cellular factors able to restrict viral infection is one of the key strategies used to design new drugs against infection. Here, we report for the first time that the cellular protein BST2/Tetherin (a widely known host antiviral molecule) behaves as a restriction factor of RSV infection.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted in France during the 2023-24 RSV season analyzed the effectiveness of nirsevimab, a monoclonal antibody, in preventing RSV infections in infants, focusing on breakthrough cases.
  • Out of 695 RSV-infected infants, researchers sequenced the full-length RSV genome of 545 infants, identifying that 48% had breakthrough infections despite receiving nirsevimab.
  • While no resistance was found in RSV-A infections from nirsevimab-treated infants, two cases of RSV-B showed substitutions linked to resistance, indicating a potential concern for the antibody's effectiveness against this variant.
View Article and Find Full Text PDF
Article Synopsis
  • - First-generation monoclonal antibodies (mAbs) for COVID-19 were withdrawn due to resistance from Omicron variants, but two new mAbs, VYD222/Pemivibart and AZD3152/Sipavibart, were approved in 2024.
  • - Researchers tested these mAbs against contemporary JN.1 sublineages and found VYD222 still had moderate activity, but AZD3152 lost effectiveness against several variants.
  • - The study underscores the importance of monitoring VYD222's clinical performance and raises concerns about AZD3152's efficacy in treating infections from newer variants.
View Article and Find Full Text PDF
Article Synopsis
  • Respiratory syncytial virus (RSV) is a significant cause of hospitalizations and fatalities in infants globally, prompting France to start a national program administering nirsevimab, a monoclonal antibody treatment, to protect infants from RSV infections.
  • A modeling study was conducted to evaluate the effectiveness of nirsevimab and estimate the number of RSV-related hospitalizations avoided in infants under 24 months during the 2023-24 season in France.
  • The findings indicated that nirsevimab prevented approximately 5,800 RSV-associated hospitalizations for bronchiolitis in children under 24 months, with around 4,200 of these cases in infants aged 0-2 months.
View Article and Find Full Text PDF

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs.

View Article and Find Full Text PDF

Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses.

View Article and Find Full Text PDF

Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline.

View Article and Find Full Text PDF

Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle.

View Article and Find Full Text PDF

Infections caused by human respiratory syncytial virus (RSV) are associated with substantial rates of morbidity and mortality. Treatment options are limited, and there is urgent need for the development of efficient antivirals. Pattern recognition receptors such as the cytoplasmic helicase retinoic acid-inducible gene (RIG) I can be activated by viral nucleic acids, leading to activation of interferon-stimulated genes and generation of an "antiviral state.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the primary cause of severe respiratory infection in infants worldwide. Replication of RSV genomic RNA occurs in cytoplasmic inclusions generating viral ribonucleoprotein complexes (vRNPs). vRNPs then reach assembly and budding sites at the plasma membrane.

View Article and Find Full Text PDF

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue.

View Article and Find Full Text PDF

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb.

View Article and Find Full Text PDF

Biomolecular condensates have emerged as an important subcellular organizing principle. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation.

View Article and Find Full Text PDF

Unlabelled: Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis owing to their low titer and large infused volume.

View Article and Find Full Text PDF

We report evaluation of 30 assays' (17 rapid tests (RDTs) and 13 automated/manual ELISA/CLIA assay (IAs)) clinical performances with 2594 sera collected from symptomatic patients with positive SARS-CoV-2 rRT-PCR on a respiratory sample, and 1996 pre-epidemic serum samples expected to be negative. Only 4 RDT and 3 IAs fitted both specificity (> 98%) and sensitivity (> 90%) criteria according to French recommendations. Serology may offer valuable information during COVID-19 pandemic, but inconsistent performances observed among the 30 commercial assays evaluated, which underlines the importance of independent evaluation before clinical implementation.

View Article and Find Full Text PDF

Background: Acquired infections in hospitalized elderly people are a growing concern. In long-term care facilities with multiple staff and visitor contacts, virus outbreaks are a common challenge for infection prevention teams. Although several studies have reported nosocomial RSV outbreaks in long term care facilities, molecular epidemiology data are scarce.

View Article and Find Full Text PDF

Background: Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children. Currently, there is no RSV vaccine or universally accessible antiviral treatment available. Addressing the urgent need for new antiviral agents, we have investigated the capacity of a non-coding single-stranded oligonucleotide (ssON) to inhibit RSV infection.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a current pandemic worldwide. This virus can reach all organs and disturbs the immune system, leading to a cytokine storm in severe forms. We aimed to report cutaneous features among coronavirus disease 2019 (COVID-19) hospitalized patients.

View Article and Find Full Text PDF

Infection of host cells by the respiratory syncytial virus (RSV) is characterized by the formation of spherical cytoplasmic inclusion bodies (IBs). These structures, which concentrate all the proteins of the polymerase complex as well as some cellular proteins, were initially considered aggresomes formed by viral dead-end products. However, recent studies revealed that IBs are viral factories where viral RNA synthesis, i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9d2f1gj58oncc708vj03f92f35dngipo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once