The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration.
View Article and Find Full Text PDFBackground: Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene.
Results: Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf.
Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (). codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies.
View Article and Find Full Text PDFBackground: Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear.
Results: mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema.
Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin.
View Article and Find Full Text PDFThe lamin A/C () gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. has 12 exons and alternative splicing of exon 10 results in two major isoforms-lamins A and C. Mutations found throughout the gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation.
View Article and Find Full Text PDFThe evolution of tetrapod limbs from paired fish fins comprised major changes to the appendicular dermal and endochondral skeleton. Fish fin rays were lost, and the endochondral bone was modified and elaborated to form three distinct segments common to all tetrapod limbs: the stylopod, the zeugopod and the autopod. Identifying the molecular mechanisms that contributed to these morphological changes presents a unique insight into our own evolutionary history.
View Article and Find Full Text PDFPeripheral axons of sensory neurons innervate skin cells to form a functional sensory organ. In this issue of Developmental Cell, Rasmussen et al. (2018) demonstrate that scale formation is essential for the development and regeneration of zebrafish sensory axons and vasculature.
View Article and Find Full Text PDFDuring zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing commit to the osteoblast lineage upon expressing , whereas the strong upregulation of correlates with a commitment to a joint cell type.
View Article and Find Full Text PDFThe evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold.
View Article and Find Full Text PDFThe fin-to-limb transition represents one of the major vertebrate morphological innovations associated with the transition from aquatic to terrestrial life and is an attractive model for gaining insights into the mechanisms of morphological diversity between species. One of the characteristic features of limbs is the presence of digits at their extremities. Although most tetrapods have limbs with five digits (pentadactyl limbs), palaeontological data indicate that digits emerged in lobed fins of early tetrapods, which were polydactylous.
View Article and Find Full Text PDFThe zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community.
View Article and Find Full Text PDFSexually dimorphic breeding tubercles (BTs) are keratinized epidermal structures that form clusters on the dorsal surface of the anterior rays of zebrafish male pectoral fins. BTs appear during sexual maturation and are maintained through regular shedding and renewal of the keratinized surface. Following pectoral fin amputation, BT clusters regenerate after the initiation of revascularization, but concomitantly with a second wave of angiogenesis.
View Article and Find Full Text PDFBackground: We recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.
View Article and Find Full Text PDFWe characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12).
View Article and Find Full Text PDFThe zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis.
View Article and Find Full Text PDFThe fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments.
View Article and Find Full Text PDFJoubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4).
View Article and Find Full Text PDFBackground: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration.
Methodology/principal Findings: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)).
The early development of teleost paired fins is strikingly similar to that of tetrapod limb buds and is controlled by similar mechanisms. One early morphological divergence between pectoral fins and limbs is in the fate of the apical ectodermal ridge (AER), the distal epidermis that rims the bud. Whereas the AER of tetrapods regresses after specification of the skeletal progenitors, the AER of teleost fishes forms a fold that elongates.
View Article and Find Full Text PDFThe sequence and chromosomal distribution of keratin genes of zebrafish were compared with that of other fishes and mammals to provide an insight into the evolution of this gene family in vertebrates. By comparative sequence analysis and radiation hybrid mapping, we identified 16 type I and 7 type II keratin genes in the zebrafish genome. This contrasts with mammals, where type I and type II keratin genes are similar in number.
View Article and Find Full Text PDFThe zebrafish caudal fin constitutes an important model for studying the molecular basis of tissue regeneration. The cascade of genes induced after amputation or injury, leading to restoration of the lost fin structures, include those responsible for wound healing, blastema formation, tissue outgrowth, and patterning. We carried out a systematic study to identify genes that are up-regulated during "initiation" (1 day) and "outgrowth and differentiation" (4 days) of fin regeneration by using two complementary methods, suppression subtraction hybridization (SSH) and differential display reverse transcriptase polymerase chain reaction (DDRT-PCR).
View Article and Find Full Text PDFIn the first part of this paper we review current knowledge regarding fish scales, focusing on elasmoid scales, the only type found in two model species, the zebrafish and the medaka. After reviewing the structure of scales and their evolutionary origin, we describe the formation of the squamation pattern. The regularity of this process suggests a pre-patterning of the skin before scale initiation.
View Article and Find Full Text PDFZebrafish lamina-associated polypeptides 2 (ZLAP2) beta, gamma and omega have in common an N-terminal region with a LEM domain, and in the C-terminal half of the molecule a lamina binding domain and a membrane spanning sequence. The maternally synthesized omega is the largest isoform and the only LAP2 present in the rapidly dividing embryonic cells up to the gastrula stage. ZLAP2omega levels decrease during development, concomitant with the increase of the somatic isoforms ZLAP2beta and gamma.
View Article and Find Full Text PDF