Human adipose mesenchymal stem cells (haMSCs) are multipotent adult stem cells of great interest in regenerative medicine or oncology. They present spontaneous calcium oscillations related to cell cycle progression or differentiation but the correlation between these events is still unclear. Indeed, it is difficult to mimic haMSCs spontaneous calcium oscillations with chemical means.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent nonhematopoietic cells with the ability to differentiate into various specific cell types, thus holding great promise for regenerative medicine. Early clinical trials have proven that MSC-based therapy is safe, with possible efficacy in various diseased states. Moreover, genetic modification of MSCs to improve their function can be safely achieved using electrogene transfer.
View Article and Find Full Text PDFDimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes.
View Article and Find Full Text PDF