Publications by authors named "Marie-Alexandrine Bolzinger"

For addressing health issues and ecological concerns, the cosmetic and pharmaceutical industries are facing the challenge of designing emulsions without the use of surfactants. Emulsions stabilized by colloidal particles, known as Pickering emulsions, are promising in this matter. In this article, three different types of particles (neutral, anionic and cationic) are used alone or in binary mixtures as stabilizers of Pickering emulsions.

View Article and Find Full Text PDF

Topical administration of active substances may be promoted by optimizing not only the vehicle formulation but also the application protocol. The formulation aspects are widely studied in the literature while a few works are dedicated to the development of application methods. In this context, we studied an application protocol usable as a part of skincare routine by investigating the effect of massage on the skin penetration of retinol.

View Article and Find Full Text PDF

Background: To produce viral vaccines, avian cell lines are interesting alternatives to replace the egg-derived processes for viruses that do not grow well on mammalian cells. The avian suspension cell line DuckCelt-T17 was previously studied and investigated to produce a live attenuated metapneumovirus (hMPV)/respiratory syncytial virus (RSV) and influenza virus vaccines. However, a better understanding of its culture process is necessary for an efficient production of viral particles in bioreactors.

View Article and Find Full Text PDF

The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs).

View Article and Find Full Text PDF

Nifedipine (NIF) is a Class II drug of the Biopharmaceutical Classification System (BCS) with low oral bioavailability, low dissolution rate and significant hepatic drug metabolism. The transdermal route using supersaturated systems could be considered. For this purpose, physicochemical properties of NIF such as its dissolution rate, may be a limiting factor and must be improved.

View Article and Find Full Text PDF

Introduction: Ascorbic acid (AA) is a powerful antioxidant capable of acting significantly both in the prevention and treatment of the skin aging process. One way to assess the in vivo efficacy of anti-aging treatments is by using the high-frequency ultrasound (HFUS) skin image analysis technique, a non-invasive approach that allows for a new level of evaluating the effectiveness of dermatological and cosmetic products. The aim of the present study was to assess the performance of a topical emulsion of liquid crystalline structures containing AA using the 50 MHz HFUS skin image analysis method.

View Article and Find Full Text PDF

Non-ideal behaviour of mixed ions is disclosed in skin absorption experiments of mixed halide anions in excised pig skin. Comparison of skin absorption of pure and mixed ions shows enhanced penetration of chaotropic ions from mixed solutions. An experimental design and statistical analysis using a Scheffé {3,2} simplex-lattice allows investigating the full ternary diagram of anion mixtures of fluoride, bromide and iodide.

View Article and Find Full Text PDF

Objective: Pickering emulsions are increasingly used in the pharmaceutical and cosmetic fields, especially for topical applications, since these systems require solid particles as emulsifiers instead of surfactants which are known to cause skin irritation. The solid inorganic nanoparticles (TiO and ZnO) used as UV filters in sunscreen formulations may also stabilize emulsion droplets, so that the utility of surfactants may be questioned. Surfactant-free sunscreen emulsions solely stabilized by such nanoparticles (NPs) have been studied.

View Article and Find Full Text PDF

Emulsified systems are widely used for topical delivery with the aim of optimizing cutaneous absorption and offering a pleasant sensory. They also may provide a protection of the active molecule against oxidation and/or degradation. The oil phase of o/w emulsions may consist of liquid crystalline structures, especially lamellar structures which are similar to those found in the stratum corneum lipids.

View Article and Find Full Text PDF

Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous.

View Article and Find Full Text PDF

For several years, the international context is deeply affected by the use of chemical and biological weapons. The use of CBRN (Chemical Biological Radiological Nuclear) threat agents from military stockpiles or biological civilian industry demonstrate the critical need to improve capabilities of decontamination for civilians and military. Physical decontamination systems that operate only by adsorption and displacement such as Fuller's Earth, have the drawback of not neutralizing hazardous agents, giving place to cross contaminations.

View Article and Find Full Text PDF

We present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA-b-PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure.

View Article and Find Full Text PDF

Repeated attacks using organophosphorus compounds, in military conflicts or terrorist acts, necessitate developing inexpensive and readily available decontamination systems. Nanosized cerium oxide is a suitable candidate, acting as a heterogeneous catalyst for the degradation of organophosphorus compounds such as VX agent or sarin. However, the reaction mechanism of the phosphatase mimetic activity of CeO2 nanoparticles is not fully described.

View Article and Find Full Text PDF

We investigated the influence of nanoparticle (NP) surface composition on different aspects of skin delivery of a lipophilic drug: chemical stability, release and skin penetration. Cholecalciferol was chosen as a labile model drug. Poly(lactic acid) (PLA)-based NPs without surface coating, with a non-ionic poly(ethylene glycol) (PEG) coating, or with a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) coating were prepared using flash nanoprecipitation.

View Article and Find Full Text PDF

Clinical use of calcitriol (1,25-dihydroxyvitamin D) as an anticancer agent is currently limited by the requirement of supraphysiological doses and associated hypercalcemia. Nanoencapsulation of calcitriol is a strategy to overcome these drawbacks, allowing reduced administrated doses and/or frequency, while retaining the therapeutic activity towards cancer cells. For this purpose, we investigated the impact of calcitriol encapsulation on its antiproliferative activity and optimized formulation parameters with that respect.

View Article and Find Full Text PDF

Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles.

View Article and Find Full Text PDF

Purpose: To evaluate skin penetration and retention of americium (Am) and plutonium (Pu), in different chemical forms relevant to the nuclear industry and to treatment by chelation.

Materials And Methods: Percutaneous penetration of different Am and Pu forms were evaluated using viable pig skin with the Franz cell diffusion system. The behavior of the complex Pu-tributyl phosphate (Pu-TBP), Am or Pu complexed to the chelator Diethylene triamine pentaacetic acid (DTPA) and the effect of dimethyl sulfoxide (DMSO) was assessed.

View Article and Find Full Text PDF

The stabilization of o/w Pickering emulsions in cases of weak adsorption of solid particles at the surface of oil droplets is addressed. Though the adsorption is usually very strong and irreversible when partial wetting conditions are fulfilled, electrostatic repulsions between charged solid particles act against the adsorption. The regime of weak adsorption was reached using charged silica nanoparticles at high pH and low ionic strength.

View Article and Find Full Text PDF

Organophosphorus compounds (OP), which mainly penetrate via the percutaneous pathway, represent a threat for both military and civilians. Body surface decontamination is vital to prevent victims poisoning. The development of a cost-effective formulation, which could be efficient and easy to handle in case of mass contamination, is therefore crucial.

View Article and Find Full Text PDF

This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e.

View Article and Find Full Text PDF

Purpose: Measurement of skin absorption of ions requires specific experimental protocols regarding the use of pig skin as a model, the viability of excised skin in water medium over 24 h, the presence of endogenous ions, and evaluation of the contributions of facilitated transport through ion channels and ion transporters.

Method: Absorption experiments of halide anions F(-), Cl(-), Br(-) and I(-) in excised skin were performed in Franz diffusion cells. Experiments were performed on human and porcine skin under various conditions so as to define and validate experimental protocols.

View Article and Find Full Text PDF

Purpose: The purpose of the study was to sort skin penetration of anions with respect to their properties and to assess their mechanisms of penetration.

Methods: Aqueous solutions of halides at two concentrations were prepared and quantitative penetration studies were carried out for 24 h using Franz diffusion cells. The iodide permeation was also measured after blocking of anion channels and transporters to investigate the role of this specific transport.

View Article and Find Full Text PDF

Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution.

View Article and Find Full Text PDF

Coated packagings with thin films containing antimicrobial agents are an alternative technology to ensure the protection of products against microbial contaminations. Indeed, they allow lowering the antimicrobial concentration in the bulk of the product while meeting the safety requirements and the growing consumer demand for low preservative concentrations. Microencapsulation is a suitable way for controlling active agent release and providing a long-term activity.

View Article and Find Full Text PDF

Polymer microparticles used for drug encapsulation and delivery have various surface morphologies depending on the type of formulation ingredients and parameters of the manufacture process. This works aims at investigating the critical parameters governing the morphology of microparticles and to underline the influence of their surface state on the drug release. The classical fabrication process by the "emulsion-solvent evaporation" is addressed using poly(ɛ-caprolactone) as the polymer and methylene chloride as the volatile organic solvent.

View Article and Find Full Text PDF