Publications by authors named "Marie-Agnes M'Callum"

Modeling the tumor-immune cell interactions in humanized mice is complex and limits drug development. Here, we generated easily accessible tumor models by transforming either primary skin fibroblasts or induced pluripotent stem cell-derived cell lines injected in immune-deficient mice reconstituted with human autologous immune cells. Our results showed that fibroblastic, hepatic, or neural tumors were all efficiently infiltrated and partially or totally rejected by autologous immune cells in humanized mice.

View Article and Find Full Text PDF

The study of human liver pathophysiology has been hampered for decades by the lack of easily accessible, robust, and representative in vitro models. The discovery of induced pluripotent stem cells (iPSCs)-which can be generated from patients' somatic cells, engineered to harbor specific mutations, and differentiated into hepatocyte-like cells-opened the way to more meaningful modeling of liver development and disease. Nevertheless, representative modeling of many complex liver conditions requires the recreation of the interplay between hepatocytes and nonparenchymal liver cells.

View Article and Find Full Text PDF

Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs).

View Article and Find Full Text PDF

Background And Aims: Genome editing of induced pluripotent stem cells (iPSCs) holds great potential for both disease modeling and regenerative medicine. Although clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 provides an efficient and precise genome editing tool, iPSCs are especially difficult to transfect, resulting in a small percentage of cells carrying the desired correction. A high-throughput method to identify edited clones is required to reduce the time and costs of such an approach.

View Article and Find Full Text PDF