Publications by authors named "Marie Vanessa Coulet"

The energetics of sulfur-carbon interaction are studied using thermo-desorption and immersion microcalorimetry experiments. Sulfur is incorporated in meso- and microporous carbons by impregnation either from the liquid phase or the vapor phase. Varying the temperature of impregnation enables to fill preferentially microporous domains (vapor impregnation) or both micro-meso-macro domains (liquid impregnation).

View Article and Find Full Text PDF

Understanding the impact of shaping processes on solid adsorbents is critical for the implementation of MOFs in industrial separation processes or as catalytic materials. Production of MOF-containing shaped particles is typically associated with loss of porosity and modification of acid sites, two phenomena that affect their performance. Herein, we report a detailed study on how extrusion affects the crystallinity, porosity, and acidity of the aluminium fumarate MOF with clays or SiO gel binders.

View Article and Find Full Text PDF
Article Synopsis
  • Defect engineering and metal encapsulation are explored to optimize the reactivity of metal-organic frameworks (MOFs), specifically focusing on MOF-808 (Zr).
  • Various samples of MOF-808 are synthesized and evaluated to understand the effects of defects and platinum nanoparticle encapsulation on their intrinsic properties.
  • The study finds that while defects can reduce porosity, they enhance the stability of MOF-808 in water and have the potential to fine-tune its adsorption characteristics.
View Article and Find Full Text PDF

Metal-organic frameworks are widely considered for the separation of chemical mixtures due to their adjustable physical and chemical properties. However, while much effort is currently devoted to developing new adsorbents for a given separation, an ideal scenario would involve a single adsorbent for multiple separations. Porous materials exhibiting framework flexibility offer unique opportunities to tune these properties since the pore size and shape can be controlled by the application of external stimuli.

View Article and Find Full Text PDF

The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix.

View Article and Find Full Text PDF

Because of their high tunability and surface area, metal-organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL-100(Fe) and disordered Basolite® F300, with identical iron 1,3,5-benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition.

View Article and Find Full Text PDF

A Calvet-type differential scanning calorimeter has been implemented on a synchrotron beamline devoted to X-ray absorption spectroscopy. As a case study, the complex crystallization process in amorphous Ge(15)Sb(85) phase-change material is followed by simultaneous calorimetric and quick-EXAFS measurements. A first crystallization at 514(1) K is related to the crystallization of an Sb-rich phase accompanied by segregation of Ge atoms.

View Article and Find Full Text PDF

Negative thermal expansion (NTE) in tellurium based liquid alloys (GeTe6 and GeTe12) is analyzed through the atomic vibrational properties. Using neutron inelastic scattering, we show that the structural evolution resulting in the NTE is due to a gain of vibrational entropy that cancels out the Peierls distortion. In the NTE temperature range, these competing effects give rise to noticeable changes in the vibrational density of states spectra.

View Article and Find Full Text PDF

In this paper we describe a prototype of a diamond anvil cell (DAC) for high pressure/high temperature studies. This DAC combines the use of a resistive oven of 250 W power in a very small volume, associated with special conical seats for Boehler-type diamond anvils in order to have a large angular acceptance. To protect the diamond anvils from burning and to avoid the oven oxidation, the heated DAC is enclosed in a vacuum chamber.

View Article and Find Full Text PDF

Synchrotron small angle x-ray scattering measurements on water and zinc bromide ZnBr2 aqueous solutions were carried out from ambient to supercritical conditions. For both systems several isobars (between 285 and 600 bars) were followed beyond the critical isochore. The data were analyzed through an Ornstein-Zernike formalism in terms of correlation length and null angle structure factor.

View Article and Find Full Text PDF