Early placenta development involves cytotrophoblast differentiation into extravillous trophoblast (EVT) and syncytiotrophoblast (STB). Defective trophoblast development and function may result in severe pregnancy complications, including fetal growth restriction and pre-eclampsia. The incidence of these complications is increased in pregnancies of fetuses affected by Rubinstein-Taybi syndrome, a developmental disorder predominantly caused by heterozygous mutations in CREB-binding protein () or E1A-binding protein p300 ().
View Article and Find Full Text PDFObjective: Noninvasive Prenatal Diagnosis has recently been introduced for a limited number of monogenetic disorders. However, the majority of DNA diagnostics still require fetal material obtained using an invasive test. Recently, a novel technique, TRIC (Trophoblast Retrieval and Isolation from the Cervix), has been described, which collects fetal trophoblast cells by endocervical sampling.
View Article and Find Full Text PDFMutations in the non-coding RNA () have been associated with familial forms of the pregnancy-specific HELLP syndrome. These mutations negatively affect extravillous trophoblast (EVT) differentiation from a proliferative to an invasive state and disturb the binding of RNA splicing complex proteins PCBP1, PCBP2, and YBX1 to . In this study, by using both and experiments, we investigate if these proteins are involved in the regulation of EVT invasion during placentation.
View Article and Find Full Text PDFRevaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells.
View Article and Find Full Text PDFPreeclampsia is a frequent gestational hypertensive disorder with equivocal pathophysiology. Knockout of peptide hormone ELABELA (ELA) has been shown to cause preeclampsia-like symptoms in mice. However, the role of ELA in human placentation and whether ELA is involved in the development of preeclampsia in humans is not yet known.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2019
Pregnancy Hypertens
July 2019
The apelinergic-axis (Apelin, Elabela and their receptor APJ) is involved in many physiological and pathological processes. Both Elabela/APJ and Apelin/APJ are implicated in the pathophysiology of preeclampsia in rodents. However, the findings regarding the apelinergic axis in human preeclamptic placental development have been rather conflicting.
View Article and Find Full Text PDFThe number of molecules identified to be involved in communication between placenta and decidua is fast expanding. Previously, we showed that NODAL expressed in maternal endometrial stromal cells is able to affect NODAL and STOX1 expression in placental extravillous trophoblasts. The effect of maternal NODAL on placental NODAL expression is achieved via Activin A, while preliminary data suggests that maternal NODAL affects STOX1 expression in trophoblasts potentially via IGF1.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a demyelinating and degenerative disease of the central nervous system. Normally, demyelination is followed by remyelination, which requires repopulation of a demyelinated area by oligodendrocyte precursor cells. Although large numbers of precursor cells are present in MS lesions, remyelination often fails, in part by the inability of precursor cells to differentiate into mature myelin-forming cells.
View Article and Find Full Text PDFPreeclampsia (PE) is a gestational hypertensive syndrome affecting between 5 and 8% of all pregnancies. Although PE is the leading cause of fetal and maternal morbidity and mortality, its molecular etiology is still unclear. Here, we show that ELABELA (ELA), an endogenous ligand of the apelin receptor (APLNR, or APJ), is a circulating hormone secreted by the placenta.
View Article and Find Full Text PDFSingle-gene mutations account for more than 6000 diseases, 10% of all pediatric hospital admissions, and 20% of infant deaths. Down syndrome and other aneuploidies occur in more than 0.2% of births worldwide and are on the rise because of advanced reproductive age.
View Article and Find Full Text PDFCerebellar granule neuronal progenitors (GNPs) are the precursors of cerebellar granule cells (CGCs) and are believed to be the cell of origin for medulloblastoma (MB), yet the molecular mechanisms governing GNP neurogenesis are poorly elucidated. Here, we demonstrate that storkhead box 1 (Stox1), a forkhead transcriptional factor, has a pivotal role in cerebellar granule neurogenesis and MB suppression. Expression of Stox1 is upregulated along with GNP differentiation and repressed by activation of sonic hedgehog (SHH) signaling.
View Article and Find Full Text PDFThe familial forms of early onset pre-eclampsia and related syndromes (HELLP) present with hypertension and proteinuria in the mother and growth restriction of the fetus. Genetically, these clinically similar entities are caused by different founder-dependent, placentally-expressed paralogous genes. All susceptibility genes (STOX1, lincHELLP, INO80B) identified so far are master control genes that regulate an essential trophoblast differentiation pathway, but act at different entry points.
View Article and Find Full Text PDFBackground: The physiological demands of pregnancy on the maternal cardiovascular system can catapult women into a metabolic syndrome that predisposes to atherosclerosis in later life. We sought to identify the nature of the epigenomic changes associated with the increased cardiovascular disease (CVD) risk in adult women following pre-eclampsia.
Findings: We assessed the genome wide epigenetic profile by methyl-C sequencing of monozygotic parous twin sister pairs discordant for a severe variant of pre-eclampsia.
LINC-HELLP, showing chromosomal linkage with the pregnancy-specific HELLP syndrome in Dutch families, reduces differentiation from a proliferative to an invasive phenotype of first-trimester extravillous trophoblasts. Here we show that mutations in LINC-HELLP identified in HELLP families negatively affect this trophoblast differentiation either by inducing proliferation rate or by causing cell cycle exit as shown by a decrease in both proliferation and invasion. As LincRNAs predominantly function through interactions with proteins, we identified the directly interacting proteins using chromatin isolation by RNA purification followed by protein mass spectrometry.
View Article and Find Full Text PDFIn humans, the elucidation of the genetics underlying multifactorial diseases such as pre-eclampsia remains complex. Given the current day availability of genome-wide linkage- and expression data pools, we applied pathway-guided genome-wide meta-analysis guided by the premise that the functional network underlying these multifactorial syndromes is under selective genetic pressure. This approach drastically reduced the genomic region of interest, i.
View Article and Find Full Text PDFThis review describes the current knowledge regarding genetics and epigenetics of pregnancy-associated diseases with placental origin. We discuss the effect on genetic linkage analyses when the fetal genotype determines the maternal phenotype. Secondly, the genes identified by genome-wide linkage studies to be associated with pre-eclampsia (ACVR2A, STOX1) and the HELLP-syndrome (LINC-HELLP) are discussed regarding their potential functions in the etiology of disease.
View Article and Find Full Text PDFNodal, a secreted signaling protein from the transforming growth factor beta (TGF-β)-super family plays a vital role during early embryonic development. Recently, it was found that maternal decidua-specific Nodal knockout mice show intrauterine growth restriction (IUGR) and preterm birth. The chromosomal location of NODAL is in the same linkage area as the placental (fetal) pre-eclampsia (PE) susceptibility gene STOX1, which is associated with the familial form of early-onset, IUGR-complicated PE.
View Article and Find Full Text PDFThe HELLP syndrome is a pregnancy-associated disease inducing hemolysis, elevated liver enzymes, and low platelets in the mother. Although the HELLP symptoms occur in the third trimester in the mother, the origin of the disease can be found in the first trimester fetal placenta. A locus for the HELLP syndrome is present on chromosome 12q23 near PAH.
View Article and Find Full Text PDFIntraneuronal fibrillary tangles are a major hallmark of several neurodegenerative diseases including Alzheimer's disease. The major constituents of these hallmarks are hyper-phosphorylated tau. In this study we used a neuronal cellular model which over-expresses transcription factor STOX1A in combination with the longest human tau isoform to test the effect of STOX1A on tau phosphorylation.
View Article and Find Full Text PDFSTOX1A is a transcription factor which is functionally and structurally similar to the forkhead box protein family. STOX1A has been shown to be associated with pre-eclampsia, a pregnancy associated disease, and to have potential implications in late onset Alzheimer's disease. However, the exact function of STOX1A and its target genes are still largely unknown.
View Article and Find Full Text PDFDuring the first trimester of pregnancy fetal trophoblasts invade the maternal decidua, thereby remodeling the maternal spiral arteries. This process of trophoblast invasion is very similar to cancer cell invasion, with multiple signaling pathways shared between the two. Pregnancy-related diseases, e.
View Article and Find Full Text PDFBackground: In this study we investigated the involvement of the transcription factor STOX1A in the regulation of the cell cycle.
Methodology/principal Findings: We found that several major cell cycle regulatory genes were differentially expressed upon STOX1A stimulation and knockdown in the neuroblastoma cell line SH-SY5Y. This includes STOX1A dependent differential regulation of cyclin B1 expression, a cyclin which is known to regulate mitotic entry during the cell cycle.