The enzyme model, mouse acetylcholinesterase, which exhibits its active site at the bottom of a narrow gorge, was investigated in the presence of different concentrations of sucrose to shed light on the protein and water dynamics in cholinesterases. The study was conducted by incoherent neutron scattering, giving access to molecular dynamics within the time scale of sub-nano to nanoseconds, in comparison with molecular dynamics simulations. With increasing sucrose concentration, we found non-linear effects, e.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand.
View Article and Find Full Text PDFBioscavengers are molecules able to neutralize neurotoxic organophosphorus compounds (OP) before they can reach their biological target. Human butyrylcholinesterase (hBChE) is a natural bioscavenger each molecule of enzyme neutralizing one molecule of OP. The amount of natural enzyme is insufficient to achieve good protection.
View Article and Find Full Text PDFDegradation of organophosphorus compounds was achieved in the presence of purified fungal laccase from Trametes versicolor and a small molecular weight redox mediator (ABTS). This laccase-mediator system (LMS) catalyzed degradation of VX, PhX and VR while had no apparent effect on CVX, ecothiophate or demeton. Inhibition of ABTS oxidation was shown with VX, PhX, VR and CVX.
View Article and Find Full Text PDF