Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)-the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline.
View Article and Find Full Text PDFIn the original version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include the following: "This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001144), the UK Medical Research Council (FC001144), and the Wellcome Trust (FC001144)." https://doi.
View Article and Find Full Text PDFYes-associated protein (YAP), the downstream transducer of the Hippo pathway, is a key regulator of organ size, differentiation and tumorigenesis. To uncover Hippo-independent YAP regulators, we performed a genome-wide CRISPR screen that identifies the transcriptional repressor protein Trichorhinophalangeal Syndrome 1 (TRPS1) as a potent repressor of YAP-dependent transactivation. We show that TRPS1 globally regulates YAP-dependent transcription by binding to a large set of joint genomic sites, mainly enhancers.
View Article and Find Full Text PDFBiotrophic fungal plant pathogens establish an intimate relationship with their host to support the infection process. Central to this strategy is the secretion of a range of protein effectors that enable the pathogen to evade plant immune defences and modulate host metabolism to meet its needs. In this Review, using the smut fungus Ustilago maydis as an example, we discuss new insights into the effector repertoire of smut fungi that have been gained from comparative genomics and discuss the molecular mechanisms by which U.
View Article and Find Full Text PDFThe biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U.
View Article and Find Full Text PDFPlants can be colonized by fungi that have adopted highly diverse lifestyles, ranging from symbiotic to necrotrophic. Colonization is governed in all systems by hundreds of secreted fungal effector molecules. These effectors suppress plant defense responses and modulate plant physiology to accommodate fungal invaders and provide them with nutrients.
View Article and Find Full Text PDFInfection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid.
View Article and Find Full Text PDFExpression profiling of fungal genes in the arbuscular mycorrhiza (AM) symbiosis has been based on studies of RNA extracted from fungal tissue or mycorrhizal roots, giving only a general picture of overall transcript levels in the targeted tissues. Information about the spatial distribution of transcripts within AM fungal structures during different developmental stages is essential to a better understanding of fungal activity in symbiotic interactions with host roots and to determine molecular events involved in establishment and functioning of the AM symbiosis. The obligate biotrophic nature of AM fungi is a challenge for developing new molecular methods to identify and localize their activity in situ.
View Article and Find Full Text PDFThe arbuscular mycorrhiza association results from a successful interaction between genomes of the plant and fungal symbiotic partners. In this study, we analyzed the effect of inactivation of late-stage symbiosis-related pea genes on symbiosis-associated fungal and plant molecular responses in order to gain insight into their role in the functional mycorrhizal association. The expression of a subset of ten fungal and eight plant genes, previously reported to be activated during mycorrhiza development, was compared in Glomus intraradices-inoculated wild-type and isogenic genotypes of pea mutated for the PsSym36, PsSym33, and PsSym40 genes where arbuscule formation is inhibited or fungal turnover modulated, respectively.
View Article and Find Full Text PDFThe co-existence of two arbuscular mycorrhizal fungal (AMF) species, Glomus intraradices and Glomus claroideum, in the root systems of plants was investigated in a greenhouse experiment aimed at reconstructing interactions during an early stage of primary succession on a coal-mine spoil bank in Central Europe. Two plant species, Tripleurospermum inodorum and Calamagrostis epigejos, were inoculated either with one or both AMF species. Fungal development, determined by trypan blue and alkaline phosphatase staining as well as by PCR amplification of rRNA genes with species-specific primers, and the expression of five genes with different metabolic functions in the intraradical structures of G.
View Article and Find Full Text PDFMechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR.
View Article and Find Full Text PDFCyclopropane fatty acid (CFA) synthesis was investigated in Oenococcus oeni. The data obtained demonstrated that acid-grown cells or cells harvested in the stationary growth phase showed changes in fatty acid composition similar to those of ethanol-grown cells. An increase of the CFA content and a decrease of the oleic acid content were observed.
View Article and Find Full Text PDFGene expression profiling based on tissue extracts gives only limited information about genes associated with complex developmental processes such as those implicated in fungal interactions with plant roots during arbuscular mycorrhiza development and function. To overcome this drawback, a direct fluorescent in situ RT-PCR methodology was developed for spatial mapping of gene expression in different presymbiotic and symbiotic structures of an arbuscular mycorrhizal fungus. Transcript detection was optimized by targeting the LSU rRNA gene of Glomus intraradices and monitoring expression of a stearoyl-CoA-desaturase gene that is consistently expressed at high levels in spores, hyphae, arbuscules and vesicles.
View Article and Find Full Text PDF