Publications by authors named "Marie Therese Besson"

Mitochondrial defects associated with respiratory chain complex I deficiency lead to heterogeneous fatal syndromes. While the role of NDUFS8, an essential subunit of the core assembly of the complex I, is established in mitochondrial diseases, the mechanisms underlying neuropathology are poorly understood. We developed a Drosophila model of NDUFS8 deficiency by knocking down the expression of its fly homologue in neurons or in glial cells.

View Article and Find Full Text PDF

Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetic neurodegenerative disease characterized by movement disorders, cognitive decline and neuropsychiatric symptoms. HD is caused by expanded CAG tract within the coding region of Huntingtin protein. Despite major insights into the molecular mechanisms leading to HD, no effective cure is yet available.

View Article and Find Full Text PDF

Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by an expanded CAG tract within the coding region of Huntingtin protein. Mutant Huntingtin (mHtt) is ubiquitously expressed, abundantly in neurons but also significantly in glial cells. Neuron-intrinsic mechanism and alterations in glia-to-neuron communication both contribute to the neuronal dysfunction and death in HD pathology.

View Article and Find Full Text PDF

Excitatory amino acid transporters (EAATs) are structurally related plasma membrane proteins known to mediate the Na(+)/K(+)-dependent uptake of the amino acids l-glutamate and dl-aspartate. In the nervous system, these proteins contribute to the clearance of glutamate from the synaptic cleft and maintain excitatory amino acid concentrations below excitotoxic levels. Two homologues exist in Drosophila melanogaster, dEAAT1 and dEAAT2, which are specifically expressed in the nervous tissue.

View Article and Find Full Text PDF

L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain.

View Article and Find Full Text PDF

The Drosophila excitatory amino acid transporters dEAAT1 and dEAAT2 are nervous-specific transmembrane proteins that mediate the high affinity uptake of L-glutamate or aspartate into cells. Here, we demonstrate by colocalization studies that both genes are expressed in discrete and partially overlapping subsets of differentiated glia and not in neurons in the embryonic central nervous system (CNS). We show that expression of these transporters is disrupted in mutant embryos deficient for the glial fate genes glial cells missing (gcm) and reversed polarity (repo).

View Article and Find Full Text PDF

In insects, wing imaginal discs respond to the steroid hormone 20-hydroxyecdysone by initiating morphogenesis leading to the formation of the adult flight appendages. In this work we analyse the expression of a Bombyx gene, referred to as Urbain, whose cDNA had been previously isolated from wing discs (Chareyre et al. 1993).

View Article and Find Full Text PDF